Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077301    DOI: 10.1088/1674-1056/22/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Rainbow trapping based on long-range plasmonic Bragg gratings at telecom frequencies

Chen Lin (陈林)a, Zhang Tian (张天)a, Li Xunb
a Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
b Department of Electrical and Computer Engineering, McMaster University, Ontario L8S4L8, Canada
Abstract  The group velocity of long-range surface plasmon polaritons (LRSPPs) in a wide frequency bandwidth at infrared frequencies is significantly reduced by dielectric gratings of graded thickness on both sides of a thin metal film. This structure can reduce the propagation loss of slow surface plasmons in “rainbow trapping” systems based on plasmonic Bragg gratings. Compared with dielectric gratings of graded thickness on a single side of a metal film, the proposed structure is able to guide slow light with a much longer propagation distance for the same group index factor. Finite-difference time-domain simulation results show that slow LRSPPs with the group velocity of c/14.5 and the propagation distance of 10.4 μm are achieved in dielectric gratings of uniform thickness on both sides of a thin metal film at 1.62 μm.
Keywords:  surface plasmon polaritons      slow light      photonic integrated circuits  
Received:  13 January 2013      Revised:  14 March 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Bs (Wave propagation, transmission and absorption)  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104093) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2011QN041).
Corresponding Authors:  Chen Lin     E-mail:  chen.lin@mail.hust.edu.cn

Cite this article: 

Chen Lin (陈林), Zhang Tian (张天), Li Xun Rainbow trapping based on long-range plasmonic Bragg gratings at telecom frequencies 2013 Chin. Phys. B 22 077301

[1] Vlasov Y A, O'Boyle M, Hamann H F and McNab S J 2005 Nature 438 65
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Ozbay Ekmel 2006 Science 311 189
[4] Liang H M, Fang L, Wang J Q, Li M, Niu X Y and Du J L 2009 Chin. Phys. B 18 4870
[5] Wang Y, He X J, Wu Y M, Wu Q, Mei J S, Li L W, Yang F X, Zhao T and Li L W 2010 Acta Phys. Sin. 59 6921 (in Chinese)
[6] Shen Y, Fan D H, Fu J W and Yu G P 2011 Acta Phys. Sin. 60 117302 (in Chinese)
[7] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[8] Chen L and Wang G P 2009 Opt. Express 17 3903
[9] Chen L, Zhou X Y and Wang G P 2008 Appl. Phys. B 92 127
[10] Tsakmakidis K L, Boardman A D and Hess O 2007 Nature 450 397
[11] Gan Q, Fu Z, Ding Y and Bartoli F 2008 Phys. Rev. Lett. 100 256803
[12] Gan Q, Ding Y and Bartoli F 2009 Phys. Rev. Lett. 102 056801
[13] Chen L, Wang G P, Gan Q and Bartoli F J 2009 Phys. Rev. B 80 161106
[14] Chen L, Wang G P, Gan Q and Bartoli F J 2010 Appl. Phys. Lett. 97 153115
[15] Chen L, Wang G P, Li X, Li W, Shen Y, Lai J and Chen S 2011 Appl. Phys. B 104 653
[16] Gan Q, Gao Y, Wagner K, Vezenov D, Ding Y J and Bartoli F J 2011 Proc. Natl. Acad. Sci. USA 108 5169
[17] Lu W, Huang Y, Casse B, Banyal R and Sridhar S 2010 Appl. Phys. Lett. 96 211112
[18] Park J, Kim K Y, Lee I M, Na H, Lee S Y and Lee B 2010 Opt. Express 18 598
[19] Jang M and Atwater H 2011 Phys. Rev. Lett. 107 207401
[20] Reza A, Dignam M and Hughes S 2008 Nature 455 E10
[21] Wuestner S, Pusch A, Tsakmakidis K L, Hamm J M and Hess O 2010 Phys. Rev. Lett. 105 127401
[22] Berini P 2009 Adv. Opt. Photon. 1 484
[23] Chen L and Wang G 2007 Appl. Phys. B 89 573
[24] Chen L, Li X, Wang G P, Li W, Chen S H, Xiao L and Gao D S 2012 J. Ligtwave Technol. 30 163
[25] Chen L, Zhang T, Li X and Huang W P 2012 Opt. Express 20 20535
[26] Chen L, Li X and Wang G P 2013 Opt. Commun. 291 400
[27] Johnson P B and Christy R 1972 Phys. Rev. B 6 4370
[28] Mori D and Baba T 2005 Opt. Express 13 9398
[29] Baba T, Mori D, Inoshita K and Kuroki Y 2004 J. Sel. Top. Quant. 10 484
[30] Sandtke M and Kuipers L 2007 Nat. Photon. 1 573
[1] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[2] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[3] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[4] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[5] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[6] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[7] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[8] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[9] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[10] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[11] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[12] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[13] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[14] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[15] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
No Suggested Reading articles found!