Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040503    DOI: 10.1088/1674-1056/ac9de6
GENERAL Prev   Next  

Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model

Hengchun Hu(胡恒春) and Yaqi Li(李雅琦)
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Lie symmetry analysis is applied to a (3+1)-dimensional Virasoro integrable model and the corresponding similarity reduction equations are obtained with the different infinitesimal generators. Invariant solutions with arbitrary functions for the (3+1)-dimensional Virasoro integrable model, including the interaction solution between a kink and a soliton, the lump-type solution and periodic solutions, have been studied analytically and graphically.
Keywords:  (3+1)-dimensional Virasoro integrable model      Lie symmetry      invariant solutions  
Received:  18 September 2022      Revised:  13 October 2022      Accepted manuscript online:  27 October 2022
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
Corresponding Authors:  Hengchun Hu     E-mail:  hhengchun@163.com

Cite this article: 

Hengchun Hu(胡恒春) and Yaqi Li(李雅琦) Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model 2023 Chin. Phys. B 32 040503

[1] Matveev V B and Salle M A 1990 Darboux Transformations and Solitons (Berlin: Springer-Verlag) p. 70
[2] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Springer) p. 195
[3] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[4] Lou S Y and Hu X B 1997 J. Phys. A: Math. Gen. 30 L95
[5] Jia J and Lin J 2012 Opt. Express 20 7469
[6] Lin J, Ren B, Li H M and Li Y S 2008 Phys. Rev. E 77 036605
[7] Hu H C, Li Y Y and Zhu H D 2018 Chaos Soliton. Fract. 108 77
[8] Hu H C and Li X D 2022 Int. J. Mod. Phys. B 36 2250001
[9] Kumar S, Kumar D and Kumar A 2020 Chaos Soliton. Fract. 142 110507
[10] Chen J C, Ma Z Y and Hu Y H 2018 J. Math. Anal. Appl. 460 987
[11] Chen J C and Zhu S D 2017 Appl. Math. Lett. 73 136
[12] Hu H C and Sun R L 2022 Mod. Phys. Lett. B 36 2150587
[13] Hu H C and Zhang Y Q 2021 Mod. Phys. Lett. B 35 2150108
[14] Hu H C and Liu F Y 2020 Chin. Phys. B 29 040201
[15] Huang L 2006 Acta Phys. Sin. 55 3864 (in Chinese)
[16] Lin J and Wang K L 2001 Acta Phys. Sin. 50 13 (in Chinese)
[17] Zhang H Y and Ran Z 2009 Chin. Phys. Lett. 26 030203
[18] Lin J 1996 Commun. Theor. Phys. 25 447
[19] Lin J, Lou S Y and Wang K L 2001 Phys. Lett. A 287 257
[20] Lin J, Lou S Y and Wang K L 2000 Z. Naturforsch. A 55 589
[1] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[2] Lie symmetries and exact solutions for a short-wave model
Chen Ai-Yong (陈爱永), Zhang Li-Na (章丽娜), Wen Shuang-Quan (温双全). Chin. Phys. B, 2013, 22(4): 040510.
[3] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[4] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui(方建会), Zhang Bin(张斌), Zhang Wei-Wei(张伟伟), and Xu Rui-Li(徐瑞莉) . Chin. Phys. B, 2012, 21(5): 050202.
[5] Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong(王性忠), Fu Hao(付昊), and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2012, 21(4): 040201.
[6] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[7] Lie symmetry and Mei conservation law of continuum system
Shi Shen-Yang(施沈阳) and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2011, 20(2): 021101.
[8] Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling(张美玲), Sun Xian-Ting(孙现亭), Wang Xiao-Xiao(王肖肖), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(11): 110202.
[9] Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion
Xie Yin-Li(解银丽), Jia Li-Qun(贾利群), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(1): 010203.
[10] A new type of conserved quantity of Lie symmetry for the Lagrange system
Fang Jian-Hui(方建会). Chin. Phys. B, 2010, 19(4): 040301.
[11] Lie symmetries and conserved quantities for a two-dimensional nonlinear diffusion equation of concentration
Zhao Li(赵丽), Fu Jing-Li(傅景礼), and Chen Ben-Yong(陈本永). Chin. Phys. B, 2010, 19(1): 010301.
[12] Hojman's theorem of the third-order ordinary differential equation
ü Hong-Sheng(吕洪升), Zhang Hong-Bin(张宏彬), and Gu Shu-Long(顾书龙) . Chin. Phys. B, 2009, 18(8): 3135-3138.
[13] Perturbation to Lie symmetry and another type of Hojman adiabatic invariants for Birkhoffian systems
Ding Ning(丁宁), Fang Jian-Hui(方建会), and Chen Xiang-Xia(陈相霞) . Chin. Phys. B, 2008, 17(6): 1967-1971.
[14] Noether symmetry and Lie symmetry of discrete holonomic systems with dependent coordinates
Shi Shen-Yang(施沈阳) and Huang Xiao-Hong(黄晓虹) . Chin. Phys. B, 2008, 17(5): 1554-1559.
[15] The Lie symmetries and Noether conserved quantities of discrete mechanical systems with variable mass
Shi Shen-Yang(施沈阳), Fu Jing-Li(傅景礼), Huang Xiao-Hong(黄晓虹), Chen Li-Qun(陈立群), and Zhang Xiao-Bo(张晓波) . Chin. Phys. B, 2008, 17(3): 754-758.
No Suggested Reading articles found!