INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Droop improvement in blue InGaN light emitting diode with GaN/InGaN superlattice barriers |
Tong Jin-Hui (童金辉), Zhao Bi-Jun (赵璧君), Wang Xing-Fu (王幸福), Chen Xin (陈鑫), Ren Zhi-Wei (任志伟), Li Dan-Wei (李丹伟), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体) |
Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spectrum, light-current performance curve, and internal quantum efficiency are numerically investigated by using the APSYS simulation software. It is found that the structure with GaN/InGaN superlattice barriers shows the improved light output power, lower current leakage, and efficiency droop. According to our numerical simulation and analysis, these improvements in the electrical and optical characteristics are mainly attributed to alleviation of the electrostatic field in the active region.
|
Received: 05 August 2012
Revised: 31 October 2012
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172079), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2010B090400456 and 2010A081002002), and the Science and Technology Program of Guangzhou, China (Grant No. 2011J4300018). |
Corresponding Authors:
Li Shu-Ti
E-mail: lishuti@scnu.edu.cn
|
Cite this article:
Tong Jin-Hui (童金辉), Zhao Bi-Jun (赵璧君), Wang Xing-Fu (王幸福), Chen Xin (陈鑫), Ren Zhi-Wei (任志伟), Li Dan-Wei (李丹伟), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体) Droop improvement in blue InGaN light emitting diode with GaN/InGaN superlattice barriers 2013 Chin. Phys. B 22 068505
|
[1] |
Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[2] |
Schubert M F, Chhajed S, Kim J K, Schubert E, Koleske F, Crawford M H, Lee S R, Fischer A J, Thaler G and Banas M A 2007 Appl. Phys. Lett. 91 231114
|
[3] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
|
[4] |
Lin R M, Yu S F, Chang S J, Chiang T H, Chang S P and Chen C H 2012 Appl. Phys. Lett. 101 081120
|
[5] |
Pope I A, Smowton P M, Blood P, Thomson J D, Kappers M J and Humphreys C J 2003 Appl. Phys. Lett. 82 2755
|
[6] |
Xie J, Ni X, Fan Q, Shimada R, Ozgur U and Morkoc H 2008 Appl. Phys. Lett. 93 121107
|
[7] |
Wu L J, Li S T, Liu C, Wang H L, Lu T P, Zhang K, Xiao G W, Zhou Y G, Zheng S W, Yin Y A and Yang X D 2012 Chin. Phys. B 21 068506
|
[8] |
Rozhansky I V and Zakheim D A 2007 Phys. Status Solidi A 204 227
|
[9] |
Kim A Y, Götz W, Steigerwald D A, Wierer J J, Gardner N F, Sun J, Stockman S A, Martin P S, Krames M R, Kern R S and Steranka F M 2001 Phys. Status Solidi A 188 15
|
[10] |
Chichibu S F, Azuhata T, Sugiyama M, Kitamura T, Washida Y, Okumurac H, Nakanwashi H, Sota T and Mukai T 2001 J. Vac. Sci. Technol. B 19 2177
|
[11] |
Shen Y C, Müller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
|
[12] |
Gardner N F, Müller G O, Shen Y C, Chen G, Watanabe S, Götz W and Krames M R 2007 Appl. Phys. Lett. 91 243506
|
[13] |
Monemar B and Sernelius E B2007 Appl. Phys. Lett. 91 181103
|
[14] |
Efremov A A, Bochkwereva N I, Gorbunov R I, Larinovich D A, Rebane Y T, Tarkhin D V and Shreter Y G 2006 Semiconductors 40 605
|
[15] |
Noh Y K, Kim M D and Oh J E 2011 J. Appl. Phys. 110 123108
|
[16] |
Kuo Y K, Wang T H, Chang J Y and Tsai M C 2011 Appl. Phys. Lett. 99 091107
|
[17] |
Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
|
[18] |
Kuo Y K, Tsai M C, Yen S H, Hsu T C and Shen Y J 2009 IEEE J. Sel. Top. Quantum Electron. 15 1115
|
[19] |
See http://www.crosslight.com for more information aout APSYS by Crosslight Software Inc., Burnaby, Canada
|
[20] |
Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
|
[21] |
Kuo Y K, Tsai M C, Yen S H, HsubT C and Shen YJ 2010 IEEE J. Quantum Electron. 46 1214
|
[22] |
Xia C S, Hu W D, Wang C, Li Z F, Chen X S, Lu W, SimonLi Z M and Li Z Q 2006 Opt. Quantum Electron. 38 1077
|
[23] |
Bernardini F 2007 in Nitride Semiconductor Devices: Principles and Simulation, ed. J. Piprek (New York: Wiley) p. 4968
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|