Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 068504    DOI: 10.1088/1674-1056/22/6/068504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Residual gas properties in field emission device with ZnO emitters

Wang Jin-Chan (王金婵)
School of Electronic and Information Engineering, Henan University of Science and Technology, Luoyang 471003, China
Abstract  In this paper, a vacuum system is employed to compare the emission stabilities of the same ZnO cathode in a sealed field emission (FE) device and under ultrahigh vacuum (UHV) condition. It is observed that the emission current is more stable under the UHV level than that in the device. When all conditions except the ambient gases are kept unchanged, the emission current degradation is mainly caused by the residual gases in the sealed device. The quadrupole mass spectrometer (QMS) equipped on the vacuum system is used to investigate the residual gas components. Based on the QMS data obtained, the following conclusions can be drawn: the residual gases in ZnO-FE-devices are H2, CH4, CO, Ar, and CO2. These residual gases can change the work function at the surface through adsorption or ion bombardment, thereby degrading the emission current of the cathode.
Keywords:  residual gas      ZnO      field emission      degradation      vacuum  
Received:  23 October 2012      Revised:  04 January 2013      Accepted manuscript online: 
PACS:  85.45.-Db  
  85.45.-w (Vacuum microelectronics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60904023).
Corresponding Authors:  Wang Jin-Chan     E-mail:  Wang4712279@163.com

Cite this article: 

Wang Jin-Chan (王金婵) Residual gas properties in field emission device with ZnO emitters 2013 Chin. Phys. B 22 068504

[1] Chang Y Q, Chen X H, Zhang H Z, Qiang W J and Long Y 2007 J. Vac. Sci. Technol. B 25 1249
[2] Wang X P, Wang Z, Wang L J and Mei C Y 2011 Chin. Phys. B 20 105203
[3] Gong J F, Dou Z M, Wang Z Q, Zhang B, Zhu W H, Zhang K X, Liu M Y, Zhu H and Zhou J F 2012 Chin. Phys. B 21 068101
[4] Semet V, Vu T B, Pauporte T, Joulaud L and Vermersch F J 2011 J. Appl. Phys. 109 054301
[5] Kang H W, Yeo J, Hong S, Hwang J O, Lee P, Han S Y, Lee J H, Rho Y S, Kim S O, Ko S H and Sung H J 2011 J. Phys. Chem. C 115 11435
[6] Choi W B, Chuang D S, Kang J H, Kim H Y, Jin Y W, Han I T, Lee Y H, Jung J E, Lee N S, Park G S and Kim J M 1999 Appl. Phys. Lett. 75 3129
[7] Xiao J, Zhang G M, Bai X, Yu L G, Zhao X Y and Guo D Z 2009 Vacuum 83 265
[8] Zhang H Z, Wang R W and Zhu Y W 2004 J. Appl. Phys. 96 624
[9] Kim D H, Jang H S, Lee S Y and Lee H R 2004 Nanotechnology 15 1433
[10] Yeong K S, Maung K H and Thong J T L 2007 Nanotechnology 18 185608
[11] Cui Y K, Zhang X B, Lei W, Di Y S, Xiao M, Yang X X and Zhao Z W 2010 IEEE Electron Dev. Lett. 31 479
[12] Wang J C, Zhang X B, Lei W, Xiao M, Cui Y K, Di Y S and Mao F M 2007 J. Vac. Sci. Technol. B 25 615
[13] Dean K A, Burgin T P and Chalamala B R 2001 Appl. Phys. Lett. 79 1873
[14] Li Z and Wang C Y 2006 Chem. Phys. 330 417
[15] Bormashov V S, Baturin A S, Nikolskiy K N, Tchesov R G and Sheshin E P 2006 Nucl. Instrum. Methods Phys. Res. A 558 256
[16] Yang Y H, Wang C X, Wang B, Xu N S and Yang G W 2005 Chem. Phys. Lett. 403 248
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[3] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[4] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[5] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[8] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[9] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[12] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[13] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[14] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[15] Vacuum-gap-based lumped element Josephson parametric amplifier
Sishi Wu(吴思诗), Dengke Zhang(张登科), Rui Wang(王锐), Yulong Liu(刘玉龙), Shuai-Peng Wang(王帅鹏), Qichun Liu(刘其春), J S Tsai(蔡兆申), and Tiefu Li(李铁夫). Chin. Phys. B, 2022, 31(1): 010306.
No Suggested Reading articles found!