Abstract In this paper, a vacuum system is employed to compare the emission stabilities of the same ZnO cathode in a sealed field emission (FE) device and under ultrahigh vacuum (UHV) condition. It is observed that the emission current is more stable under the UHV level than that in the device. When all conditions except the ambient gases are kept unchanged, the emission current degradation is mainly caused by the residual gases in the sealed device. The quadrupole mass spectrometer (QMS) equipped on the vacuum system is used to investigate the residual gas components. Based on the QMS data obtained, the following conclusions can be drawn: the residual gases in ZnO-FE-devices are H2, CH4, CO, Ar, and CO2. These residual gases can change the work function at the surface through adsorption or ion bombardment, thereby degrading the emission current of the cathode.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.