INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with double electron blocking layers |
Cheng Zhang(张诚), Hui-Qing Sun(孙慧卿), Xu-Na Li(李旭娜), Hao Sun(孙浩), Xuan-Cong Fan(范宣聪), Zhu-Ding Zhang(张柱定), Zhi-You Guo(郭志友) |
Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The AlGaN-based deep ultraviolet light-emitting diodes (LED) with double electron blocking layers (d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances compared with the conventional structure with only a single electron blocking layer, such as a higher recombination rate, improved light output power and internal quantum efficiency (IQE). The reasons can be concluded as follows. On the one hand, the weakened electrostatic field within the quantum wells (QWs) enhances the electron-hole spatial overlap in QWs, and therefore increases the probability of radioactive recombination. On the other hand, the added n-AlGaN layer can not only prevent holes from overflowing into the n-side region but also act as another electron source, providing more electrons.
|
Received: 17 June 2015
Revised: 09 October 2015
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
Fund: Project supported by the Special Strategic Emerging Industries of Guangdong Province, China (Grant No. 2012A080304006), the Major Scientific and Technological Projects of Zhongshan City, Guangdong Province, China (Grant No. 2014A2FC204), and the Forefront of Technology Innovation and Key Technology Projects of Guangdong Province, China (Grant Nos. 2014B010121001 and 2014B010119004). |
Corresponding Authors:
Hui-Qing Sun
E-mail: sunhq@scnu.edu.cn
|
Cite this article:
Cheng Zhang(张诚), Hui-Qing Sun(孙慧卿), Xu-Na Li(李旭娜), Hao Sun(孙浩), Xuan-Cong Fan(范宣聪), Zhu-Ding Zhang(张柱定), Zhi-You Guo(郭志友) Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with double electron blocking layers 2016 Chin. Phys. B 25 028501
|
[1] |
Cai J X, Sun H Q, Zheng H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 058502
|
[2] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J and Wang H L 2011 Chin. Phys. B 20 108504
|
[3] |
Guo Z N, Yun F, Ding W, Zhang Y, Guo M F, Liu S, Huang Y P, Liu H, Wang S, Feng L G and Wang J T 2015 Acta Phys. Sin. 64 018501 (in Chinese)
|
[4] |
Liao Y J, Luo Y H, Wang Z K and Liao L S 2014 Chin. Phys. B 23 118508
|
[5] |
Lu F P, Li J F and Zhang S 2013 Acta Phys. Sin. 62 247201 (in Chinese)
|
[6] |
Ma L, Shen G D, Liu J P, Gao Z Y, Xu C and Wang X 2014 Chin. Phys. B 23 118507
|
[7] |
Chen Z X, Wan W, Zhang B J, He Y J and Jin C J 2014 Chin. Phys. B 23 128504
|
[8] |
Rajabi K, Cao W Y, Shen T, Ji Q B, He J, Yang W, Li L, Li D, Wang Q and Hu X D 2015 Chin. Phys. Lett. 32 027802
|
[9] |
Xin L W, Wu X M, Hua Y L, Xiao Z H, Wang L, Zhang X and Yin S G 2015 Chin. Phys. B 24 037802
|
[10] |
Wang H, Yun F, Liu S, Huang Y P, Wang Y, Zhang W H, Wei Z H, Ding W and Li Y F 2015 Acta Phys. Sin. 64 028501 (in Chinese)
|
[11] |
Liu M G, Wang Y Q, Yang Y B, Lin X Q, Xiang P, Chen W J, Han X B, Zang W J, Liao Q, Lin J L, Luo H, Wu W J, Wu Z S, Liu Y and Zhang B J 2015 Chin. Phys. B 24 038503
|
[12] |
Zhuo X J, Zhang J, Li D W, Yi H X, Ren Z W, Tong J H, Wang X F, Chen X, Zhao B J, Wang W L and Li S T 2014 Chin. Phys. B 23 068502
|
[13] |
Tong J H, Li S T, Lu T P, Liu C, Wang H L, Wu L J, Zhao B J, Wang X F and Chen X 2012 Chin. Phys. B 21 118502
|
[14] |
Li J, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 17 171909
|
[15] |
Yu H P, Li S B, Zhang P, Wu S H, Wei X B, Wu Z M and Chen Z 2014 Chin. Phys. Lett. 31 108502
|
[16] |
Hirayama H 2005 J. Appl. Phys. 97 091101
|
[17] |
Piprek J and Li S 2010 Opt. Quantum Electron. 42 89
|
[18] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
|
[19] |
Hirayama H, Tsukada Y, Maeda T and Kamata N 2010 Appl. Phys. Express 3 031002
|
[20] |
Yin Y A, Wang N Y, Fan G H and Zhang Z H 2014 Superlattices Microstruct. 76 149
|
[21] |
Wang D S, Zhang K X, Liang H W, Song S W, Yang D C, Shen R S, Liu Y, Xia X C, Luo Y M and Du G T 2014 Chin. Phys. Lett. 31 027101
|
[22] |
Wu T, Feng Z H, Liu B, Xiong H, Zhang J B, Dai J N, Cai S J and Chen C Q 2013 Opt. Quantum Electron. 45 381
|
[23] |
Zhang J, Wu T, Wu F, Yan W Y, Xiong H, Dai J N, Fang Y Y, Wu Z H and Chen C Q 2013 IEEE Photon. J. 5 1600310
|
[24] |
Yang L, Chen S C, Wu T, Wu Z H, Fang Y Y, Dai J N and Chen C Q 2013 IEEE Photon. J. 5 8200309
|
[25] |
Zhang Y Y, Zhu X L, Yin Y A and Ma J 2012 IEEE Electron Dev. Lett. 33 994
|
[26] |
Wang C L, Tsai M C, Gong J R, Liao W T, Lin P Y, Yen K Y, Chang C C, Lin H Y and Hwang S K 2007 Mater. Sci. Eng. 138 180
|
[27] |
Rozhansky I V and Zakheim D A 2007 Phys. Stat. Sol. A 204 227
|
[28] |
Guo Y, Liang M, Fu J J, Liu Z Q, Yi X Y, Wang J X, Wang G H and Li J M 2015 AIP Adv. 5 037131
|
[29] |
Yen S H, Tsai C M, Tsai M L, Shen Y J, Hsu T C and Kuo Y K 2009 IEEE Photon. Technol. Lett. 21 975
|
[30] |
Li Y, Gao Y, He M, Zhou J, Lei Y, Zhang L, Zhu K and Chen Y L 2013 J. Disp. Technol. 9 244
|
[31] |
Ding B B, Zhao F, Song J J, Xiong J Y, Zheng S W, Zhang Y Y, Xu Y Q, Zhou D T, Yu X P, Zhang H X, Zhang T and Fan G H 2013 Chin. Phys. B 22 088503
|
[32] |
Liou B T, Tsai M C, Yen S H and Kuo Y K 2009 Proc. SPIE 7211 72111D
|
[33] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
[34] |
Yen S H and Kuo Y K 2008 Appl. Phys. 103 103115
|
[35] |
Zhang Z H, Ji Y, Liu W, Tan S T, Kyaw Z, Ju Z G, Zhang X L, Hasanov N, Liu S P and Zhang Y P 2014 Appl. Phys. Lett. 104 073511
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|