INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Efficiency enhancement of InGaN based blue light emitting diodes with InGaN/GaN multilayer barriers |
Tong Jin-Hui (童金辉), Li Shu-Ti (李述体), Lu Tai-Ping (卢太平), Liu Chao (刘超), Wang Hai-Long (王海龙), Wu Le-Juan (仵乐娟), Zhao Bi-Jun (赵璧君), Wang Xing-Fu (王幸福), Chen Xin (陈鑫 ) |
Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied. It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power, lower current leakage, and less efficiency droop over its conventional InGaN/GaN counterparts. Based on the numerical simulation and analysis, these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells (QWs) when the InGaN/GaN multilayer barriers are used.
|
Received: 08 April 2012
Revised: 04 June 2012
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172079), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2010B090400456 and 2010A081002002), and the Science and Technology Program of Guangzhou, China (Grant No. 2011J4300018). |
Corresponding Authors:
Li Shu-Ti
E-mail: lishuti@scnu.edu.cn
|
Cite this article:
Tong Jin-Hui (童金辉), Li Shu-Ti (李述体), Lu Tai-Ping (卢太平), Liu Chao (刘超), Wang Hai-Long (王海龙), Wu Le-Juan (仵乐娟), Zhao Bi-Jun (赵璧君), Wang Xing-Fu (王幸福), Chen Xin (陈鑫 ) Efficiency enhancement of InGaN based blue light emitting diodes with InGaN/GaN multilayer barriers 2012 Chin. Phys. B 21 118502
|
[1] |
Pearton S J, Zolper J C, Shul R J and Ren F 1999 J. Appl. Phys. 86 1
|
[2] |
Jain S C, Willander M, Narayan J and Overstraeten R V 2000 J. Appl. Phys. 87 965
|
[3] |
Matsuoka T, Okamoto H, Nakao M, Harima H and Kurimoto E 2002 Appl. Phys. Lett. 81 1246
|
[4] |
Chen G, Craven M, Kim A, Munkholm A, Watanabe S, Camras M, Gotz W and Steranka F 2008 Phys. Status Solidi A 205 1086
|
[5] |
Wu L J, Li S T, Liu C, Wang H L, Lu T P, Zhang K, Xiao G W, Zhou Y G, Zheng S W, Yin Y A and Yang X D 2012 Chin. Phys. B 21 068506
|
[6] |
Lu T P, Li S T, Liu C, Zhang K, Xu Y Q, Tong J H, Wu L J, Wang H L, Yang X D, Yin Y A, Xiao G W and Zhou Y G 2012 Appl. Phys. Lett. 100 141106
|
[7] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
|
[8] |
Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[9] |
Monemar B and Sernelius B E 2007 Appl. Phys. Lett. 91 181103
|
[10] |
Lu T P, Li S T, Zhang K, Liu C, Yin Y A, Wu L J, Wang H L, Yang X D, Xiao G W and Zhou Y G 2011 Opt. Express 19 18320
|
[11] |
Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[12] |
Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
|
[13] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 108504
|
[14] |
Cho Y H, Song J J, Keller S, Minsky M S, Hu E, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1128
|
[15] |
Oh E, Sone C, Nam O, Park H and Park Y 2000 Appl. Phys. Lett. 76 3242
|
[16] |
Franssen G, Suski T, Perlin P, Bohdan R, Bercha A, Trzeciakowski W, Makarowa I, Prystawko P, Leszczyński M, Grzegor I Y, Porowski S and Kokenyesi S 2005 Appl. Phys. Lett. 87 041109
|
[17] |
Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K 2000 Nature 406 865
|
[18] |
Wei T B, Hu Q, Duan R F, Wei X C, Huo Z Q, Wang J X, Zeng Y P, Wang G H and Li J M 2009 J. Cryst. Growth 311 4153
|
[19] |
He T, Li H, Dai L G, Wang X L, Chen Y, Ma Z G, Xu P Q, Jiang Y, Wang L, Jia H Q, Wang W X and Chen H 2011 Science China Physics, Mechanics & Astronomy 54 446
|
[20] |
Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
|
[21] |
Park S H, Ahn D, Koo B H and Kim J W 2009 Appl. Phys. Lett. 95 063507
|
[22] |
Arif R A, Zhao H, Ee Y K and Tansu N 2008 IEEE J. Quantum Electron 44 573
|
[23] |
Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
|
[24] |
Chung H J, Choi R J, Kim M H, Han J W, Park Y M, Kim Y S, Paek H S, Sone C S, Park Y J and Kim J K 2009 Appl. Phys. Lett. 95 241109
|
[25] |
APSYS Crosslight Software Inc., Burnaby, Canada, http://www.crosslight.com
|
[26] |
Stringfellow G B and Craford M G 1997 High Brightness Light Emitting Diodes (San Diego: Academic) p. 412
|
[27] |
Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|