|
|
Orientation of KRb molecules in a switched electrostatic field |
Huang Yun-Xia (黄云霞)a b, Xu Shu-Wu (徐淑武)a b, Yang Xiao-Hua (杨晓华)a b |
a School of Science, Nantong University, Nantong 226007, China; b State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China |
|
|
Abstract We theoretically investigate the orientation of the cold KRb molecules induced in a switched electrostatic field by numerically solving the full time-dependent Schrödinger equation. The results show that the periodic field-free molecular orientation can be realized for the KRb molecules by rapidly switching off the electrostatic field. Meanwhile, by varying the switching times of the electrostatic field, the adiabatic and nonadiabatic interactions of the molecules with the applied field can be realized. Moreover, the influences of the electrostatic field strength and the rotational temperature to the degree of the molecular orientation are studied. The investigations show that, the increasing of the electrostatic field will increase the degree of the molecular orientation, both in the constant-field regime and in the field-free regime, while the increasing of the rotational temperature of the cold molecules will greatly decrease the degree of the molecular orientation.
|
Received: 04 August 2012
Revised: 12 October 2012
Accepted manuscript online:
|
PACS:
|
37.90.+j
|
(Other topics in mechanical control of atoms, molecules, and ions)
|
|
33.57.+c
|
(Magneto-optical and electro-optical spectra and effects)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the State Key Development Program for Basic Research of China (Grant No. 2011921602), and the Scientific and Technical Project of Nantong City, China (Grant No. BK2011052), and the Qing Lan Project. |
Corresponding Authors:
Yang Xiao-Hua
E-mail: xhyang@ntu.edu.cn; xhyang@phy.ecnu.edu.cn
|
Cite this article:
Huang Yun-Xia (黄云霞), Xu Shu-Wu (徐淑武), Yang Xiao-Hua (杨晓华) Orientation of KRb molecules in a switched electrostatic field 2013 Chin. Phys. B 22 053701
|
[1] |
Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543
|
[2] |
Han Y C, Hu W H, Yu J and Cong S L 2009 Chin. Phys. B 18 4834
|
[3] |
Zhang S A, Lu C H, Shi J H, Jia T Q, Wang Z G and Sun Z R 2011 Phys. Rev. A 84 013408
|
[4] |
Rost J M, Griffin J C, Friedrich B and Herschbach D R 1992 Phys. Rev. Lett. 68 1299
|
[5] |
Kanya R and Ohshima Y 2004 Phys. Rev. A 70 013403
|
[6] |
Slenczka A 1999 Chem. Eur. J. 5 1136
|
[7] |
Kisiel Z, Kosarzewski J, Pietrewicz B A and Pszczólknowski L 2000 Chem. Phys. Lett. 325 523
|
[8] |
Kanya R and Ohshima Y 2004 J. Chem. Phys. 121 9489
|
[9] |
Wang J, Liu F, Yue D G, Zhao J, Xu Y, Meng Q T and Liu W K 2010 Chin. Phys. B 19 123301
|
[10] |
Rahim M Abd El, Antoine R, Broyer M, Rayane D and Dugourd Ph 2005 J. Phys. Chem. A 109 8507
|
[11] |
Jaroń-Becker A, Becker A and Faisal F H M 2003 J. Phys. B 36 375
|
[12] |
Jin D S and Ye J 2011 Phys. Today 5 27
|
[13] |
Parker D H and Bernstein R B 1989 Annu. Rev. Phys. Chem. 40 561
|
[14] |
Friedrich B and Herschbach D R 1991 Nature 353 412
|
[15] |
Franks K J, Li H Z and Kong W 1999 J. Chem. Phys. 110 11779
|
[16] |
Friedrich B, Nahler N H and Buck U 2003 J. Mod. Opt. 50 2677
|
[17] |
Sakai H, Minemoto S, Nanjo H, Tanji H and Suzuki T 2003 Phys. Rev. Lett. 90 083001
|
[18] |
Tanji H, Minemoto S and Sakai H 2005 Phys. Rev. A 72 063401
|
[19] |
Mayle M, González-Férez R and Schmelcher P 2007 Phys. Rev. A 75 013421
|
[20] |
Ortigoso J, Rodríguez M, Gupta M and Friedrich B 1999 J. Chem. Phys. 110 3870
|
[21] |
Sugawara Y, Goban A, Minemoto S and Sakai H 2008 Phys. Rev. A 77 031403
|
[22] |
Muramatsu M, Hita M, Minemoto S and Sakai H 2009 Phys. Rev. A 79 011403
|
[23] |
Sánchez-Moreno P and González-Férez R 2007 Phys. Rev. A 76 053413
|
[24] |
Ni K K, Ospelkaus S, de Miranda1 M H G, Pe'er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
|
[25] |
Henriksen N E 1999 Chem. Phys. Lett. 312 196
|
[26] |
Zhang S A, Shi J H, Zhang H, Jia T Q, Wang Z G and Sun Z R 2011 Phys. Rev. A 83 023416
|
[27] |
Deiglmayr J, Aymar M, Wester R, Weidemüller M and Dulieu O 2008 J. Chem. Phys. 129 064309
|
[28] |
Stapelfeldt H 2003 Eur. Phys. J. D 26 15
|
[29] |
Yan Z C and Seideman T 1999 J. Chem. Phys. 111 4113
|
[30] |
Kong W and Bulthuis J 2000 J. Phys. Chem. A 104 1055
|
[31] |
Seideman T 2001 J. Chem. Phys. 115 5965
|
[32] |
van Buuren L D, Sommer C, Motsch M, Pohle S, Schenk M, Bayerl J, Pinkse P W H and Rempe G 2009 Phys. Rev. Lett. 102 033001
|
[33] |
Crompvoets F M H, Jongma P T, Bethlem H L, van Roij A J A and Meijer G 2002 Phys. Rev. Lett. 89 093004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|