Please wait a minute...
Chinese Physics, 2007, Vol. 16(3): 707-717    DOI: 10.1088/1009-1963/16/3/025
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Electrostatic surface guiding of cold polar molecules with a single charged wire

Deng Lian-Zhong(邓联忠), Xia Yong(夏勇), and Yin Jian-Ping(印建平)
Key Laboratory of Optical and Magnetic Resonance Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  This paper proposes a scheme to guide cold polar molecules by using a single charged wire half embanked in an insulating substrate and a homogeneous bias electric field, which is generated by a plate capacitor composed of two infinite parallel metal plates. The spatial distributions of the electrostatic field produced by the combination of the charged wire and the plate capacitor and the corresponding Stark potentials (including dipole forces) for metastable CO molecules are calculated, the relationships between the electric field and the parameters of our charged-wire layout are analysed. It also studies the influences of the insulator on the electric field distribution and the discharge effect. This study shows that the proposed scheme can be used to guide cold polar molecules in the weak-field -- seeking states, and to form various molecule-optical elements, such as molecular funnel, molecular beam-splitters and molecule interferometer, even to construct a variety of integrated molecule-optical elements and their molecule chips.
Keywords:  cold polar molecules      electrostatic field      Stark effect      molecule-optical elements  
Received:  20 March 2006      Revised:  09 June 2006      Accepted manuscript online: 
PACS:  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
  37.10.Mn (Slowing and cooling of molecules)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos~10174050, 10374029, 10434046 and 10674047) and the Science and Technology Commission of Shanghai Municipality, China (Grant No~04DZ14009), Shanghai Priority Academic Discipline and the 211 Foundation of the Educational Ministry of China.

Cite this article: 

Deng Lian-Zhong(邓联忠), Xia Yong(夏勇), and Yin Jian-Ping(印建平) Electrostatic surface guiding of cold polar molecules with a single charged wire 2007 Chinese Physics 16 707

[1] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[2] Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state
Defu Wang(王得富), Xuping Shao(邵旭萍), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2021, 30(11): 113301.
[3] Ellipticity-dependent ionization yield for noble atoms
Hristina Deliba?i?, Violeta Petrovi?. Chin. Phys. B, 2019, 28(8): 083201.
[4] Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state
Yuefeng Gu(顾跃凤), Kai Chen(陈凯), Yunxia Huang(黄云霞), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(4): 043702.
[5] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[6] Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with double electron blocking layers
Cheng Zhang(张诚), Hui-Qing Sun(孙慧卿), Xu-Na Li(李旭娜), Hao Sun(孙浩), Xuan-Cong Fan(范宣聪), Zhu-Ding Zhang(张柱定), Zhi-You Guo(郭志友). Chin. Phys. B, 2016, 25(2): 028501.
[7] Theoretical derivation and simulation of a versatileelectrostatic trap for cold polar molecules
Shengqiang Li(李胜强). Chin. Phys. B, 2016, 25(11): 113702.
[8] Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling
Qing-Hui Wang(王庆辉), Xu-Ping Shao(邵旭萍), Xiao-Hua Yang(杨晓华). Chin. Phys. B, 2016, 25(1): 013301.
[9] Balmer-alpha and Balmer-beta Stark line intensity profiles for high-power hydrogen inductively coupled plasmas
Wang Song-Bai (王松柏), Lei Guang-Jiu (雷光玖), Liu Dong-Ping (刘东平), Yang Si-Ze (杨思泽). Chin. Phys. B, 2014, 23(7): 075201.
[10] Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap
Li Sheng-Qiang (李胜强), Xu Liang (许亮), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(12): 123701.
[11] Nonlinear spectroscopy of barium in parallel electric and magnetic fields
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平). Chin. Phys. B, 2014, 23(10): 103201.
[12] Electrostatic surface trap for cold polar molecules on a chip
Wang Qin (王琴), Li Sheng-Qiang (李胜强), Hou Shun-Yong (侯顺永), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(1): 013701.
[13] Effects of prestrained InGaN interlayer on the emission properties of InGaN/GaN multiple quantum wells in a laser diode structure
Cao Wen-Yu (曹文彧), He Yong-Fa (贺永发), Chen Zhao (陈钊), Yang Wei (杨薇), Du Wei-Min (杜为民), Hu Xiao-Dong (胡晓东). Chin. Phys. B, 2013, 22(7): 076803.
[14] Droop improvement in blue InGaN light emitting diode with GaN/InGaN superlattice barriers
Tong Jin-Hui (童金辉), Zhao Bi-Jun (赵璧君), Wang Xing-Fu (王幸福), Chen Xin (陈鑫), Ren Zhi-Wei (任志伟), Li Dan-Wei (李丹伟), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体). Chin. Phys. B, 2013, 22(6): 068505.
[15] Orientation of KRb molecules in a switched electrostatic field
Huang Yun-Xia (黄云霞), Xu Shu-Wu (徐淑武), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2013, 22(5): 053701.
No Suggested Reading articles found!