CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable interface anisotropy in Pt/Co1-xFex/Pt multilayer |
Chen Yong-Yong (陈勇勇)a, Shi Zhong (时钟)a b, Zhou Shi-Ming (周仕明)a b, Rui Wen-Bin (芮文彬)c, Du Jun (杜军)c |
a Surface Physics State Laboratory and Department of Physics, Fudan University, Shanghai 200433, China;
b School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
c Department of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Interfacial magnetic anisotropy in Pt/Co1-xFex/Pt multilayer is tuned by doping iron atoms into cobalt layer. The perpendicular magnetic anisotropy and out-of-plane coercivity are found to decrease with x increasing. For a specific x, the out-of-plane coercivity acquires a maximal value as a function of the CoFe layer thickness. At low temperature, the coercivity is enhanced. Small coercivity but reasonably large perpendicular magnetic anisotropy can be obtained by controlling x and CoFe layer thickness.
|
Received: 07 December 2012
Revised: 16 January 2013
Accepted manuscript online:
|
PACS:
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074112, 10974032, and 51201114), the National Basic Research Program of China (Grant Nos. 2009CB929201 and 2010CB923401), and the Key Project of the Chinese Ministry of Education (Grant No. 210074). |
Corresponding Authors:
Shi Zhong
E-mail: shizhong@tongji.edu.cn
|
Cite this article:
Chen Yong-Yong (陈勇勇), Shi Zhong (时钟), Zhou Shi-Ming (周仕明), Rui Wen-Bin (芮文彬), Du Jun (杜军) Tunable interface anisotropy in Pt/Co1-xFex/Pt multilayer 2013 Chin. Phys. B 22 067504
|
[1] |
Johnson M T, Bloemen P J H, den Broeder F J A and de Vries J J 1996 Rep. Prog. Phys. 59 1409
|
[2] |
Zheng M, Xu Y, Guo Z H and Wang Y J 1996 Chin. Phys. Lett. 13 711
|
[3] |
Ma P P, Zheng W, Wang A L, Chen J C, Wang Y J, Li J and Chen L Y 1998 Chin. Phys. Lett. 15 376
|
[4] |
Mizunuma K, Ikeda S, Park J H, Yamamoto H, Gan H, Miura K, Hasegawa H, Hayakawa J, Matsukura F and Ohno H 2009 Appl. Phys. Lett. 95 232516
|
[5] |
Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
|
[6] |
Park J H, Park C, Jeong T, Moneck M T, Nufer N T and Zhu J G 2008 J. Appl. Phys. 103 07A917
|
[7] |
Zeper W B, van Kesteren H W, Jacobs B A J, Spruit J H M and Carcia P F 1991 J. Appl. Phys. 70 2264
|
[8] |
Fowley C, Decorde N, Oguz K, Rode K, Kurt H and Coey J M D 2010 IEEE Trans. Magn. 46 2116
|
[9] |
Numata T, Kiriyama H, Inokuchi S and Sakurai Y 1988 J. Appl. Phys. 64 5501
|
[10] |
Feng C, Mei X Z, Yang M Y, Li N, Jiang Y, Yu G H and Wang F M 2011 J. Appl. Phys. 109 063918
|
[11] |
Lü Q L, Cai J W, He S L and Sun L 2011 J. Magn. Magn. Mater. 323 465
|
[12] |
Ding Y F, Judy J H and Wang J P 2005 J. Appl. Phys. 97 10J117
|
[13] |
Feng J F, Rode K, Ackland K, Stamenov P S, Venkatesan M and Coey J M D 2012 J. Magn. Magn. Mater. 324 2298
|
[14] |
Zhang Z and Wigen P E 1991 J. Appl. Phys. 69 5649
|
[15] |
Coffey K R, Thomson T and Thiele J U 2003 J. Appl. Phys. 93 8471
|
[16] |
Kondorsky E 1940 J. Phys. (Moscow) 2 161
|
[17] |
Kisielewski M, Maziewski A, Tekielak M, Ferré J, Lemerle S, Mathet V and Chappert C 2003 J. Magn. Magn. Mater. 260 231
|
[18] |
Shan R, Gao T R and Zhou S M 2006 J. Appl. Phys. 99 063907
|
[19] |
Kipgen L, Fulara H, Raju M and Chaudhary M 2012 J. Magn. Magn. Mater. 324 3118
|
[20] |
Gallagher K, Johnson F, Kirkpatrick E M, Scott J H, Majetich S and McHenry M E 1996 IEEE Trans. Magn. 32 4842
|
[21] |
Moulas G, Lehnert A, Rusponi S, Zabloudil J, Etz C, Ouazi S, Etzkorn M, Bencok P, Gambardella P, Weinberger P and Brune H 2008 Phys. Rev. B 78 214424
|
[22] |
Bartolomé J, Figueroa A I, García L M, Bartolomé F, Ruiz L, González-Calbet J M, Petoff F, Deranlot C, Wilhelm F, Rogalev A and Brookes N 2012 Low Temp. Phys. 38 1053
|
[23] |
Suzuki T, Notarys H, Dobbertin D, Lin C J, Weller D, Miller D and Gorman G 1992 IEEE Trans. Magn. 28 2754
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|