CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of Mo capping layers thickness on the perpendicular magnetic anisotropy in MgO/CoFeB based top magnetic tunnel junction structure |
Yi Liu(刘毅)1, Kai-Gui Zhu(朱开贵)1,4, Hui-Cai Zhong(钟汇才)2, Zheng-Yong Zhu(朱正勇)3, Tao Yu(于涛)1, Su-De Ma(马苏德)1 |
1 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China; 2 Integrated Circuit Advanced Process Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 3 Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 4 Key Laboratory of Micro-nano Measurement-Manipulation and Physics, Ministry of Education, Beihang University, Beijing 100191, China |
|
|
Abstract A detailed study of the magnetic characterizations of the top structure MgO/CoFeB/Mo is presented. The samples show strong perpendicular magnetic anisotropy (PMA) when the thickness of CoFeB is 0.9 nm and 1.1 nm. The saturation magnetic moment and interface anisotropy constant are 1566 emu/cm3 and 3.75 erg/cm2, respectively. The magnetic dead layer (MDL) is about 0.23 nm in this system. Furthermore, strong capping layer thickness dependence is also observed. The strong PMA of 1.1 nm CoFeB only exists in a Mo cap layer thickness window of 1.2-2 nm. To maintain PMA, the metal layer could not be too thin or thick in these multilayers. The oxidation and diffusion of the metal capping layer should be respectively responsibility for the degradation of PMA in these thin or thick metal capping layer samples.
|
Received: 04 July 2016
Revised: 10 August 2016
Accepted manuscript online:
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
75.70.Rf
|
(Surface magnetism)
|
|
75.60.Nt
|
(Magnetic annealing and temperature-hysteresis effects)
|
|
Fund: Project supported by the National Fundamental Research Program of China (Grant No. 2011CB921804) and Beijing Key Subject Foundation of Condensed Matter Physics, China (Grant No. 0114023). |
Corresponding Authors:
Zheng-Yong Zhu
E-mail: zhuzhengyong@ime.ac.cn
|
Cite this article:
Yi Liu(刘毅), Kai-Gui Zhu(朱开贵), Hui-Cai Zhong(钟汇才), Zheng-Yong Zhu(朱正勇), Tao Yu(于涛), Su-De Ma(马苏德) Effect of Mo capping layers thickness on the perpendicular magnetic anisotropy in MgO/CoFeB based top magnetic tunnel junction structure 2016 Chin. Phys. B 25 117805
|
[1] |
Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
|
[2] |
Brataas A, Kent A D and Ohno H 2012 Nat. Mater. 11 372
|
[3] |
Lee S, Kim K, Hwang I and Cho B K 2015 Curr. Appl. Phys. 15 38
|
[4] |
Kawahara T, Takemura R, Miura K, Hayakawa J, Ikeda S, Lee Y M, Sasaki R, Goto Y, Ito K, Meguro T, Matsukura F, Takahashi H, Matsuoka H and Ohno H 2008 IEEE J. Solid-St. Circ. 43 109
|
[5] |
Kawahara T, Ito K, Takemura R and Ohno H 2012 Microelectron. Reliab. 52 613
|
[6] |
Nishimura N, Hiral T, Koganei A, Ikeda T, Okano K, Sekiguchi Y and Osada Y 2002 J. Appl. Phys. 91 5246
|
[7] |
Ye L X, Lee C M, Chang Y J and Wu T H 2008 J. Appl. Phys. 103 07F521
|
[8] |
Yoshikawa M, Kitagawa E, Nagase T, Daibou T, Nagamine M, Nishiyana K, Kishi T and Yoda H 2008 IEEE Trans. Magn. 44 2573
|
[9] |
Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G and Dieny B 2008 Appl. Phys. Lett. 92 102508
|
[10] |
Sato H, Yamanouchi M, Miura K, Ikeda S, Koizumi R, Matsukura F and Ohno H 2012 IEEE Magn. Lett. 3 3000204
|
[11] |
Liu H F, Ali S S and Han X F 2014 Chin. Phys. B 23 077501
|
[12] |
Huang J, Sim C H, Naik V B, Michael T, Ter Lim S, Huang A, Yap Q J and Han G 2016 J. Magn. Magn. Mater. 401 1150
|
[13] |
Liu Y, Yu T, Zhu Z, Zhong H, Khamis M K and Zhu K 2016 J. Magn. Magn. Mater. 410 123
|
[14] |
Sokalski V, Moneck M T, Yang E and Zhu J G 2012 Appl. Phys. Lett. 101 072411
|
[15] |
Yang H X, Chshiev M, Dieny B, Lee J H, Manchon A and Shin K H 2011 Phys. Rev. B 84 054401
|
[16] |
Lee D S, Chang H T, Cheng C W and Chern G 2014 IEEE Trans. Magn. 50 3201904
|
[17] |
Wang W G, Hageman S, Li M, Huang S, Kou X, Fan X, Xiao J Q and Chien C L 2011 Appl. Phys. Lett. 99 102502
|
[18] |
Miyakawa N, Worledge D C and Kita K 2013 IEEE Magn. Lett. 4 1000104
|
[19] |
Liu T, Zhang Y, Cai J W and Pan H Y 2014 Sci. Rep. 4 5895
|
[20] |
Li X, Yu G, Wu H, Ong P V, Wong K, Hu Q, Ebrahimi F, Upadhyaya P, Akyol M, Kioussis N, Han X, Amiri P K and Wang K L 2015 Appl. Phys. Lett. 107 142403
|
[21] |
Fang B, Zhang X, Zhang B S, Zeng Z M and Cai J W 2015 AIP Adv. 5 067116
|
[22] |
Almasi H, Reifsnyder Hickey D, Newhouse-Illige T, Xu M, Rosales M R, Nahar, Held J T, Mkhoyan K A and Wang W G 2015 Appl. Phys. Lett. 106 182406
|
[23] |
Cheng C W, Feng W, Chern G, Lee C M and Wu T 2011 J. Appl. Phys. 110 033916
|
[24] |
Cheng T I, Cheng C W and Chern G 2012 J. Appl. Phys. 112 033910
|
[25] |
Zhu T, Yang Y, Yu R C, Ambaye H, Lauter V and Xiao J Q 2012 Appl. Phys. Lett. 100 202406
|
[26] |
Johnson M T, Bloemen P J H, den Broeder F J A and de Vries J J 1996 Rep. Prog. Phys. 59 1409
|
[27] |
Fukami S, Suzuki T, Nakatani Y, Ishiwata N, Yamanouchi M, Ikeda S, Kasai N and Ohno H 2011 Appl. Phys. Lett. 98 082504
|
[28] |
Jang S Y, Lim S H and Lee S R 2010 J. Appl. Phys. 107 09C707
|
[29] |
Tsai C C, Cheng C W, Tsai M C and Chern G 2014 IEEE Trans. Magn. 50 1401404
|
[30] |
Rodmacq B, Manchon A, Ducruet C, Auffret S and Dieny B 2009 Phys. Rev. B 79 024423
|
[31] |
Chandrasekhraran R, Park I, Masel R I and Shannon M A 2005 J. Appl. Phys. 98 114908
|
[32] |
Park S W and Im H B 1992 Thin Solid Films 207 258
|
[33] |
Niessen A K and De Boer F R J 1981 Less-Common Met. 82 75
|
[34] |
Mizunuma K, Yamanouchi M, Ikeda S, Sato H, Yamamoto H, Gan H D, Miura K, Hayakawa J, Matsukura F and Ohno H 2011 Appl. Phys. Express 4 023002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|