Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 067101    DOI: 10.1088/1674-1056/22/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of hydrogen adsorption on titanium-decorated single-layer and bilayer graphenes

Pan Hong-Zhe (潘洪哲)a b, Wang Yong-Long (王永龙)a, He Kai-Hua (何开华)b, Wei Ming-Zhen (魏明真)a, Ouyang Yu (欧阳雨)a, Chen Li (陈丽)a
a School of Science, Linyi University, Linyi 276005, China;
b Department of Physics, China University of Geosciences, Wuhan 430074, China
Abstract  The adsorption of hydrogen molecules on titanium-decorated (Ti-decorated) single-layer and bilayer graphenes is studied using density functional theory (DFT) with the relativistic effect. Both the local density approximation (LDA) and the generalized gradient approximation (GGA) are used for obtaining the region of the adsorption energy of H2 molecules on Ti-decorated graphene. We find that a graphene layer with titanium (Ti) atoms adsorbed on both sides can store hydrogen up to 9.51 wt% with average adsorption energy in a range from -0.170 eV to -0.518 eV. Based on the adsorption energy criterion, we find that chemisorption is predominant for H2 molecules when the concentration of H2 molecules absorbed is low while physisorption is predominant when the concentration is high. The computation results for the bilayer graphene decorated with Ti atoms show that the lower carbon layer has no contribution to hydrogen adsorption.
Keywords:  hydrogen storage      graphene      titanium      density functional theory  
Received:  17 April 2012      Revised:  22 November 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974076, 11047020, and 11204120) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012AM022).
Corresponding Authors:  Pan Hong-Zhe     E-mail:  panhongzhe@lyu.edu.cn

Cite this article: 

Pan Hong-Zhe (潘洪哲), Wang Yong-Long (王永龙), He Kai-Hua (何开华), Wei Ming-Zhen (魏明真), Ouyang Yu (欧阳雨), Chen Li (陈丽) First-principles study of hydrogen adsorption on titanium-decorated single-layer and bilayer graphenes 2013 Chin. Phys. B 22 067101

[1] Cortright R D, Davada R R and Dumesic J A 2002 Nature 418 964
[2] Coontz R and Hanson B 2004 Science 305 957
[3] Takeichi N, Senoh H, Yokota T, Tsuruta H, Hamada K, Takeshita H T, Tanaka H, Kiyobayashi T, Takano T and Kuriyama N 2003 Int. J. Hydrogen Energy 28 1121
[4] Aceves S M, Martinez-Frias J and Garcia-Villazana O 2000 Int. J. Hydrogen Energy 25 1075
[5] Sandrock G and Thomas G 2001 Appl. Phys. A 72 153
[6] Dillon A C and Heben M J 2001 Appl. Phys. A 72 133
[7] Wang Q and Johnson J K 1999 J. Chem. Phys. 110 577
[8] Kim H S, Lee H, Han K S, Kim J H, Song M S, Park M S, Lee J Y and Kang J K 2005 J. Phys. Chem. B 109 8983
[9] Sahaym U and Norton M G 2008 J. Mater. Sci. 43 5395
[10] Cabria I, López M J and Alonso J A 2005 J. Chem. Phys. 123 204721
[11] Rojas M I and Leiva E P M 2007 Phys. Rev. B 76 155415
[12] Ataca C, Aktürk E, Ciraci S and Ustunel H 2008 Appl. Phys. Lett. 93 043123
[13] Dag S, Ozturk Y, Ciraci S and Yildirim T 2005 Phys. Rev. B 72 155404
[14] Liu Y L, Ren L, He Y and Cheng H P 2010 J. Phys.: Condens. Matter 22 445301
[15] Park H L and Chung Y C 2010 Comp. Mater. Sci. 49 297
[16] Ouyang F P, Peng S L, Zhang H, Weng L B and Xu H 2011 Chin. Phys. B 20 058504
[17] Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H and Ouyang F P 2012 Chin. Phys. B 21 027102
[18] Pan H Z, Xu M, Chen L, Jiang L, Sun Y Y and Wang Y L 2010 Acta Phys. Sin. 59 6443 (in Chinese)
[19] Delley B 1990 J. Chem. Phys. 92 508
[20] Delley B 2000 J. Chem. Phys. 113 7756
[21] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[22] Dag S, Gülseren O, Yildirim T and Ciraci S 2003 Phys. Rev. B 67 165424
[23] Okamoto Y and Miyamoto Y 2001 J. Phys. Chem. B 105 3470
[24] Gao Y and Zeng X C 2007 J. Phys.: Condens. Matter 19 386220
[25] Agrawal B K, Agrawal S, Singh S and Srivastava R 2006 J. Phys.: Condens. Matter 18 4649
[26] Orita H, Itoh N and Inada Y 2004 Chem. Phys. Lett. 384 271
[27] Cui X Y, Delley B, Freeman A J and Stampfl C 2006 Phys. Rev. Lett. 97 016402
[28] Lide D R 2004 Handbook of Chemistry and Physics, 84th edn. (Boca Raton: The Chemical Rubber Company) pp. 9-19
[29] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[30] Ataca C, Aktürk E and Ciraci S 2009 Phys. Rev. B 79 041406
[31] Liu W, Zhao Y H, Li Y, Jiang Q and Lavernia E J 2009 J. Phys. Chem. C 113 2028
[32] Liu W, Zhao Y H, Nguyen J, Li Y, Jiang Q and Lavernia E J 2009 Carbon 47 3452
[33] Ao Z M and Peeters F M 2010 Phys. Rev. B 81 205406
[34] Krasnov P O, Ding F, Singh A K and Yakobson B I 2007 J. Phys. Chem. C 111 17977
[35] Yoon M, Yang S, Hicke C, Wang E, Geohegan D and Zhang Z 2008 Phys. Rev. Lett. 100 206806
[36] Yildirim T and Ciraci S 2005 Phys. Rev. Lett. 94 175501
[37] Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y and Yip S 2003 J. Chem. Phys. 119 2376
[38] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802
[39] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[9] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[12] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
No Suggested Reading articles found!