Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 066802    DOI: 10.1088/1674-1056/22/6/066802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh

Niu Wen-Xia (牛纹霞)a, Zhang Hong (张红)b, Gong Min (龚敏)b, Cheng Xin-Lu (程新路)a
a Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
b College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
Abstract  In the present paper we give a detailed report on the results of our first-principles investigations of Ar adsorptions at the four high symmetry sites on M (111) (M = Pd, Pt, Cu, and Rh) surfaces. Our studies indicate that the most stable adsorption sites of Ar on Pd (111) and Pt (111) surfaces are found to be the fcc-hollow sites. However, for Ar adsorptions on Cu (111) and Rh (111) surfaces, the most favorable site is the on-top site. The density of states (DOS) is analyzed for Ar adsorption on M (111) surfaces, and it is concluded that the adsorption behavior is dominated by the interaction between 3s, 3p orbits of Ar atoms and the d orbit of the base metal atoms.
Keywords:  density-functional theory      binding energy      electronic structure  
Received:  30 June 2012      Revised:  29 November 2012      Accepted manuscript online: 
PACS:  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  68.47.De (Metallic surfaces)  
  65.40.gh (Work functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074176), the National Natural Science Foundation of China (Grant No. 10976019), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100181110080).
Corresponding Authors:  Zhang Hong     E-mail:  hongzhang@scu.edu.cn

Cite this article: 

Niu Wen-Xia (牛纹霞), Zhang Hong (张红), Gong Min (龚敏), Cheng Xin-Lu (程新路) First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh 2013 Chin. Phys. B 22 066802

[1] Li Sh, Yuriko O and Tetsuya T 2010 J. Phys. Chem. C 114 3544
[2] Bruch L W, Cole M W and Zaremba E 1997 Physical Adsorption: Forces and Phenomena (Oxford: Oxford Science Press)
[3] Juarez L F, Da Silva, Catherine S and Matthias S 2003 Phys. Rev. Lett. 90 066104
[4] Desjonquéres M C and Spanjaard D 1995 Concepts in Surface Science (New York: Springer)
[5] Vidali G, Ihm G, Kim H Y and Cole M W 1991 Surf. Sci. Rep. 12 135
[6] Juarez L F, Da Silva, Catherine S and Matthias S 2005 Phys. Rev. B 72 075424
[7] Juarez L F, Da Silva and Catherine S 2008 Phys. Rev. B 77 045401
[8] Seyller Th, Caragiu M, Diehl R D, Kaukasoina P and Lindroos M 1998 Chem. Phys. Lett. 291 567
[9] Caragiu M, Seyller Th and Diehl R D 2002 Phys. Rev. B 66 195411
[10] Narloch B and Menzel D 1997 Chem. Phys. Lett. 290 163
[11] Seyller Th, Caragiu M, Diehl R D, Kaukasoina P and Lindroos M 1999 Phys. Rev. B 60 11084
[12] Seyller Th, Caragiu M and Diehl R D 2000 Surf. Sci. 454 55
[13] Weiss P S and Eigler D M 1992 Phys. Rev. Lett. 69 2240
[14] Diehl R D, Seyller Th, Caragiu M, Leatherman G S, Ferralis N, Pussi K, Kaukasoina P and Lindroos M 2004 J. Phys.: Condens. Matter 16 S2839
[15] Caragiu M, Letherman G S, Seyller Th and Diehl R D 2001 Surf. Sci. 475 89
[16] Hohenberg P and Kohn W 1964 Phys. Rev. 139 864
[17] Kohn W and Sham L J 1965 Phys. Rev. 140 1133
[18] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Zeitschrift Fur Kristallographie 220 567
[19] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Wang M M, Ning H, Tao X M and Tan M Q 2011 Acta Phys. Sin. 60 047301 (in Chinese)
[22] Scheffler M and Stampfl C 2000 "Theory of Adsorption on Metal Substrates", in: Horn K and Scheffler M ed. Handbook of Surface Science, Vol. 2. Electronic Structure (Amsterdam: Elsevier) pp. 286-357
[23] Kittel C 1996 Introduction to Solid State Physics, 7th edn. (New York: Wiley)
[24] Villars P and Calvert L D 1985 Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM: Metals Park)
[25] Kittel C 1986 Introduction to Solid State Physics, 6th edn. (New York: Wiley)
[26] Ganduglia-Pirovano M V and Scheffler M 1999 Phys. Rev. B 59 15533
[27] Wandelt K and Hulse J E 1984 J. Chem. Phys. 80 1340
[28] Zeppenfeld P 2001 Physics of Covered Solid Surfaces Group III, Vol. 42 (Berlin: Springer-Verlag) p. 67
[29] Hölzl J, Schulte F K and Wagner H 1979 "Work Function of Metals," in Solid State Physics, Springer Tracts Modern Physics Vol. 85 (Berlin: Springer)
[30] Lide D R 1995 CRC Handbook of Chemistry and Physics 76th edn. (Boca Raton: CRC Press) pp. 12-123
[31] Ohtani H, Van Hove M A and Somarjai G A 1987 Surf. Sci. 187 372
[32] Silvestrelli P L, Ambrosetti A, Grubisic S and Ancilotto F 2012 Phys. Rev. B 85 165405
[33] Niu W X and Zhang H 2012 Chin. Phys. B 21 026802
[34] Li W and Li D Y 2005 J. Chem. Phys. 122 064708
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[8] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[9] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[10] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[11] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[12] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[13] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[14] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[15] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
No Suggested Reading articles found!