|
|
Brownian localization: A generalized coupling model yielding a nonergodic Langevin equation description |
Lin Jian (刘剑), Wang Hai-Yan (王海燕), Bao Jing-Dong (包景东) |
Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract A minimal system-plus-reservoir model yielding a nonergodic Langevin equation is proposed, which origins from cubic-spectral density of environmental oscillators and momentum-dependent coupling. This model allows the ballistic diffusion and classical localization simultaneously, in which the fluctuation-dissipation relation is still satisfied but the Khinchin theorem is broken. The asymptotical equilibrium for nonergodic system requires the initial thermal equilibrium, however, when the system starts from nonthermal conditions, it does not approach the equilibration even a nonlinear potential is used to bound particle, this can be confirmed by the zeroth law of thermodynamics. In the dynamics of Brownian localization, due to the memory damping function inducing a constant term, our results show that the stationary distribution of the system depends on its initial preparation of coordinate rather than momentum. The coupled oscillator chain with a fixed end boundary acts as such heat bath, which has long been used in studies of collinear atom/solid-surface scattering and lattice vibration, we investigate this problem from the viewpoint of nonergodicity.
|
Received: 01 December 2012
Revised: 20 February 2013
Accepted manuscript online:
|
PACS:
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
05.40.Jc
|
(Brownian motion)
|
|
05.40.Ca
|
(Noise)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175021). |
Corresponding Authors:
Bao Jing-Dong
E-mail: jdbao@bnu.edu.cn
|
Cite this article:
Lin Jian (刘剑), Wang Hai-Yan (王海燕), Bao Jing-Dong (包景东) Brownian localization: A generalized coupling model yielding a nonergodic Langevin equation description 2013 Chin. Phys. B 22 060513
|
[1] |
Leggett A J, Chakravarty S, Dorsey A T, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
|
[2] |
Schmid A 1983 Phys. Rev. Lett. 51 1506
|
[3] |
Guinea F, Hakim V and Muramatsu A 1985 Phys. Rev. Lett. 54 263
|
[4] |
Grabert H, Schramm P and Ingold G L 1988 Phys. Rep. 168 115
|
[5] |
Grossmann F, Dittrich T, Jung P and Hänggi P 1991 Phys. Rev. Lett. 67 516
|
[6] |
Grossmann F, Jung P, Dittrich T and Hänggi P 1991 Z. Phys. B 84 315
|
[7] |
Ferrer A V and Smith G M 2007 Phys. Rev. B 76 214303
|
[8] |
Lee M H 2001 Phys. Rev. Lett. 87 250601
|
[9] |
Kim J and Sawada I 2000 Phys. Rev. E 61 R2172
|
[10] |
Weiss U 1999 Quantum Dissipative Systems 2nd edn. (Singaproe: World Scientific)
|
[11] |
Sievers A J and Takeno S 1988 Phys. Rev. Lett. 61 970
|
[12] |
Flach S and Willis C R 1988 Phys. Rep. 295 181
|
[13] |
Caldeira A O and Leggett A J 1983 Physica A 121 587
|
[14] |
Caldeira A O and Leggett A J 1983 Ann. Phys. 149 374
|
[15] |
Ford G W, Lewis J T and O'Connell R F 1985 Phys. Rev. Lett. 55 2273
|
[16] |
Thorwart M, Harmann L, Goychuk I and Hänggi P 2000 J. Mod. Opt. 47 2905
|
[17] |
Montina A and Arecchi F T 2008 Phys. Rev. Lett. 100 120401
|
[18] |
Wei Q, Smith S T and Onofrio R 2009 Phys. Rev. E 79 031128
|
[19] |
Hasegaea H 2011 Phys. Rev. E 83 021104
|
[20] |
Campisi M, Talkner P and Hänggi P 2009 Phys. Rev. E 80 031145
|
[21] |
Lutz E 2004 Phys. Rev. Lett. 93 190602
|
[22] |
Brokmann X, Hermier J P, Messin G, et al. 2003 Phys. Rev. Lett. 90 120601
|
[23] |
Bao J D, Hänggi P and Zhuo Y Z 2005 Phys. Rev. E 72 061107
|
[24] |
Bao J D, Zhuo Y Z, Oliveira F A and Hänggi P 2006 Phys. Rev. E 74 061111
|
[25] |
Lapas L C, Morgado R, Vainstein M H, Rubi J M and Oliveira F A 2008 Phys. Rev. Lett. 101 230602
|
[26] |
Siegle P, Goychuk I, Talkner P and Hänggi P 2010 Phys. Rev. E 81 011136
|
[27] |
Siegle P, Goychuk I and Hänggi P 2010 Phys. Rev. Lett. 105 100602
|
[28] |
Siegle P, Goychuk I and Hänggi P 2011 Europhys. Lett. 93 20002
|
[29] |
Ao P and Thouless D J 1994 Phys. Rev. Lett. 72 132
|
[30] |
Makhnovskii Y A and Pollak E 2006 Phys. Rev. E 73 041105
|
[31] |
Bao J D, Song Y L, Ji Q and Zhuo Y Z 2005 Phys. Rev. E 72 011113
|
[32] |
Reimann P, Van den Broeck C, Linke H, Hänggi P, Rubi J M and Perez-Madrid A 2001 Phys. Rev. Lett. 44 416
|
[33] |
Reguera D, Schmid G, Burada P S, Rubi J M, Reimann P and Hänngi P 2006 Phys. Rev. Lett. 96 130603
|
[34] |
Burada P S, Hänggi P, Marchesoni F, Schmid G and Talkner P 2009 Chem. Phys. Chem. 10 45
|
[35] |
Schreier M, Reimann P, Hänggi P and Pollak E 1998 Europhys. Lett. 44 416
|
[36] |
Toda M, Kubo R and Saitô N 1995 Statistical Physics II (Berlin: Springer)
|
[37] |
Lee M H 2007 Phys. Rev. Lett. 98 190601
|
[38] |
Morgado R, Oliveira F A, Batrouni G G and Hansen A 2002 Phys. Rev. Lett. 89 100601
|
[39] |
Bao J D and Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104
|
[40] |
Lin F and Bao J D 2011 Chin. Phys. B 20 040502
|
[41] |
Adelman S A and Doll J D 1974 J. Chem. Phys. 61 4242
|
[42] |
Fox R F 1983 Phys. Rev. A 27 3216
|
[43] |
Dhar A and Wagh K 2007 Europhys. Lett. 79 60003
|
[44] |
Lu H and Bao J D 2011 Chin. Phys. Lett. 28 040505
|
[45] |
Florencio J Jr and Lee M H 1985 Phys. Rev. A 31 3231
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|