Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060513    DOI: 10.1088/1674-1056/22/6/060513
GENERAL Prev   Next  

Brownian localization: A generalized coupling model yielding a nonergodic Langevin equation description

Lin Jian (刘剑), Wang Hai-Yan (王海燕), Bao Jing-Dong (包景东)
Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  A minimal system-plus-reservoir model yielding a nonergodic Langevin equation is proposed, which origins from cubic-spectral density of environmental oscillators and momentum-dependent coupling. This model allows the ballistic diffusion and classical localization simultaneously, in which the fluctuation-dissipation relation is still satisfied but the Khinchin theorem is broken. The asymptotical equilibrium for nonergodic system requires the initial thermal equilibrium, however, when the system starts from nonthermal conditions, it does not approach the equilibration even a nonlinear potential is used to bound particle, this can be confirmed by the zeroth law of thermodynamics. In the dynamics of Brownian localization, due to the memory damping function inducing a constant term, our results show that the stationary distribution of the system depends on its initial preparation of coordinate rather than momentum. The coupled oscillator chain with a fixed end boundary acts as such heat bath, which has long been used in studies of collinear atom/solid-surface scattering and lattice vibration, we investigate this problem from the viewpoint of nonergodicity.
Keywords:  ocalization      nonergodicity      generalized coupling model      coupled oscillator chain  
Received:  01 December 2012      Revised:  20 February 2013      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.40.Jc (Brownian motion)  
  05.40.Ca (Noise)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175021).
Corresponding Authors:  Bao Jing-Dong     E-mail:  jdbao@bnu.edu.cn

Cite this article: 

Lin Jian (刘剑), Wang Hai-Yan (王海燕), Bao Jing-Dong (包景东) Brownian localization: A generalized coupling model yielding a nonergodic Langevin equation description 2013 Chin. Phys. B 22 060513

[1] Leggett A J, Chakravarty S, Dorsey A T, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[2] Schmid A 1983 Phys. Rev. Lett. 51 1506
[3] Guinea F, Hakim V and Muramatsu A 1985 Phys. Rev. Lett. 54 263
[4] Grabert H, Schramm P and Ingold G L 1988 Phys. Rep. 168 115
[5] Grossmann F, Dittrich T, Jung P and Hänggi P 1991 Phys. Rev. Lett. 67 516
[6] Grossmann F, Jung P, Dittrich T and Hänggi P 1991 Z. Phys. B 84 315
[7] Ferrer A V and Smith G M 2007 Phys. Rev. B 76 214303
[8] Lee M H 2001 Phys. Rev. Lett. 87 250601
[9] Kim J and Sawada I 2000 Phys. Rev. E 61 R2172
[10] Weiss U 1999 Quantum Dissipative Systems 2nd edn. (Singaproe: World Scientific)
[11] Sievers A J and Takeno S 1988 Phys. Rev. Lett. 61 970
[12] Flach S and Willis C R 1988 Phys. Rep. 295 181
[13] Caldeira A O and Leggett A J 1983 Physica A 121 587
[14] Caldeira A O and Leggett A J 1983 Ann. Phys. 149 374
[15] Ford G W, Lewis J T and O'Connell R F 1985 Phys. Rev. Lett. 55 2273
[16] Thorwart M, Harmann L, Goychuk I and Hänggi P 2000 J. Mod. Opt. 47 2905
[17] Montina A and Arecchi F T 2008 Phys. Rev. Lett. 100 120401
[18] Wei Q, Smith S T and Onofrio R 2009 Phys. Rev. E 79 031128
[19] Hasegaea H 2011 Phys. Rev. E 83 021104
[20] Campisi M, Talkner P and Hänggi P 2009 Phys. Rev. E 80 031145
[21] Lutz E 2004 Phys. Rev. Lett. 93 190602
[22] Brokmann X, Hermier J P, Messin G, et al. 2003 Phys. Rev. Lett. 90 120601
[23] Bao J D, Hänggi P and Zhuo Y Z 2005 Phys. Rev. E 72 061107
[24] Bao J D, Zhuo Y Z, Oliveira F A and Hänggi P 2006 Phys. Rev. E 74 061111
[25] Lapas L C, Morgado R, Vainstein M H, Rubi J M and Oliveira F A 2008 Phys. Rev. Lett. 101 230602
[26] Siegle P, Goychuk I, Talkner P and Hänggi P 2010 Phys. Rev. E 81 011136
[27] Siegle P, Goychuk I and Hänggi P 2010 Phys. Rev. Lett. 105 100602
[28] Siegle P, Goychuk I and Hänggi P 2011 Europhys. Lett. 93 20002
[29] Ao P and Thouless D J 1994 Phys. Rev. Lett. 72 132
[30] Makhnovskii Y A and Pollak E 2006 Phys. Rev. E 73 041105
[31] Bao J D, Song Y L, Ji Q and Zhuo Y Z 2005 Phys. Rev. E 72 011113
[32] Reimann P, Van den Broeck C, Linke H, Hänggi P, Rubi J M and Perez-Madrid A 2001 Phys. Rev. Lett. 44 416
[33] Reguera D, Schmid G, Burada P S, Rubi J M, Reimann P and Hänngi P 2006 Phys. Rev. Lett. 96 130603
[34] Burada P S, Hänggi P, Marchesoni F, Schmid G and Talkner P 2009 Chem. Phys. Chem. 10 45
[35] Schreier M, Reimann P, Hänggi P and Pollak E 1998 Europhys. Lett. 44 416
[36] Toda M, Kubo R and Saitô N 1995 Statistical Physics II (Berlin: Springer)
[37] Lee M H 2007 Phys. Rev. Lett. 98 190601
[38] Morgado R, Oliveira F A, Batrouni G G and Hansen A 2002 Phys. Rev. Lett. 89 100601
[39] Bao J D and Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104
[40] Lin F and Bao J D 2011 Chin. Phys. B 20 040502
[41] Adelman S A and Doll J D 1974 J. Chem. Phys. 61 4242
[42] Fox R F 1983 Phys. Rev. A 27 3216
[43] Dhar A and Wagh K 2007 Europhys. Lett. 79 60003
[44] Lu H and Bao J D 2011 Chin. Phys. Lett. 28 040505
[45] Florencio J Jr and Lee M H 1985 Phys. Rev. A 31 3231
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[3] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[4] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[5] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[6] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[7] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[11] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[12] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[13] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[14] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[15] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
No Suggested Reading articles found!