Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 058102    DOI: 10.1088/1674-1056/22/5/058102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Role of chelating agent in chemical and fluorescent properties of SnO2 nanoparticles

He Shao-Bo (贺少勃)a b, Wang Shi-Fa (王仕发)a, Ding Qing-Ping (丁庆平)a, Yuan Xiao-Dong (袁晓东)b, Zheng Wan-Guo (郑万国)b, Xiang Xia (向霞)a, Li Zhi-Jie (李志杰)a, Zu Xiao-Tao (祖小涛)a
a School of Physical Electronics, University of Electronic Science and Technology of China, Sichuan Chengdu 610054, China;
b Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  A modified polyacrylamide gel route is applied to synthesize SnO2 nanoparticles. High-quality SnO2 nanoparticles with a uniform size are prepared using different chelating agents. The average particle size of the samples is found to depend on the choice of the chelating agent. The photoluminescence spectrum detected at λex = 230 nm shows a new peak located at 740 nm due to the surface defect level distributed at the nanoparticle boundaries.
Keywords:  tin oxide      polyacrylamide gel      photoluminescence  
Received:  18 September 2012      Revised:  13 November 2012      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
Fund: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant Nos. 11076008 and 61178018), and the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110185110007).
Corresponding Authors:  Zu Xiao-Tao     E-mail:  xtzu@uestc.edu.cn

Cite this article: 

He Shao-Bo (贺少勃), Wang Shi-Fa (王仕发), Ding Qing-Ping (丁庆平), Yuan Xiao-Dong (袁晓东), Zheng Wan-Guo (郑万国), Xiang Xia (向霞), Li Zhi-Jie (李志杰), Zu Xiao-Tao (祖小涛) Role of chelating agent in chemical and fluorescent properties of SnO2 nanoparticles 2013 Chin. Phys. B 22 058102

[1] Luo S H, Fan J Y, Liu W L, Zhang M, Song Z T, Lin C L, Wu X L and Chu P K 2006 Nanotechnology 17 1695
[2] Wang Y, Jiang X and Xia Y 2003 J. Am. Chem. Soc. 125 16176
[3] Snaith H J and Ducati C 2010 Nano Lett. 10 1259
[4] Li L J, Zong F J, Cui X D, Ma H L, Wu X H, Zhang Q D, Wang Y L, Yang F and Zhao J Z 2007 Mater. Lett. 61 4152
[5] Zhou W, Liu R, Wan Q, Zhang Q, Pan A, Guo L and Zou B 2009 J. Phys. Chem. C 113 1719
[6] Wang Q Q, Lin B Z, Xu B H, Li X L, Chen Z J and Pian X T 2010 Micropor. Mesopor. Mat. 130 344
[7] Sinha S K. Bhattacharya R, Ray S K and Mann I 2011 Mater. Lett. 65 146
[8] Her Y C, Wu J Y, Lin Y R and Tsai S Y 2006 Appl. Phys. Lett. 89 043115
[9] Gaidi M, Hajjaji A, Smirani R, Bessais B and El Khakani M A 2010 J. Appl. Phys. 108 063537
[10] Luo S H, Wan Q, Liu W L, Zhang M, Song Z T, Lin C L and Chu Paul K 2005 Prog. Solid State Chem. 33 287
[11] Ying Z, Wan Q, Song Z T and Feng S L 2005 Mater. Lett. 59 1670
[12] Kar A, Stroscio M A, Dutta M, Kumari J and Meyyappan M 2009 Appl. Phys. Lett. 94 101905
[13] Jiang L H, Sun G Q, Zhou Z H, Sun S G, Wang Q, Yan S Y, Li H Q, Tian J, Guo J S, Zhou B and Xin Q 2005 J. Phys. Chem. B 109 8774
[14] Lai M, Lim J H, Mubeen S, Rheem Y, Mulchandani A, Deshusses M A and Myung N V 2009 Nanotechnology 20 185602
[15] Ye J F, Zhang H J, Yang R, Li X G and Qi L M 2010 Small 6 296
[16] Kuang Q, Xu T, Xie Z X, Lin S C, Huang R B and Zheng L S 2009 J. Mater. Chem. 19 1019
[17] Kim I D, Jeon E K, Choi S H, Choi D K and Tuller H L 2010 J. Electroceram. 25 159
[18] Xia X, Dong X J, Wei Q F, Cai Y B and Lu K Y 2012 Express Polym. Lett. 6 169
[19] Yang H, Wang S F, Xian T, Wei Z Q and Feng W J 2011 Mater. Lett. 65 884
[20] Lin G J, Yang H, Xian T, Wei Z Q, Jiang J L and Feng W J 2012 Adv. Powder Technol. 23 35
[21] Xian T, Yang H, Shen X, Jiang J L, Wei Z Q and Feng W J 2009 J. Alloy. Comp. 480 889
[22] Wu S Q, Liu Y Y, He L N and Wang F P 2004 Mater. Lett. 58 2772
[23] Gu F, Wang S F, Song C F, Lü M K, Qi Y X, Zhou G J, Xu D and Yuan D R 2003 Chem. Phys. Lett. 372 451
[24] Goossens O, Vanhavere F, Leys N, Boever P De, O'sullivan D, Zhou D, Spurny F, Yukihara E, Gaza R and McKeever S 2006 Radiat. Prot. Dosim. 120 433
[25] Wang B and Xu P 2009 Chin. Phys. B 18 324
[26] Liu C M, Fang L M, Zu X T and Zhou W L 2007 Chin. Phys. B 16 95
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[13] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
No Suggested Reading articles found!