INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Optoelectronic characteristics of CuO nanorods |
Xie De-Hua (谢德华), Wang Fei-Fei (王菲菲), Lü Hao (吕浩), Du Min-Yong (杜敏永), Xu Wen-Jie (徐文杰) |
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China |
|
|
Abstract Optoelectronic characteristics of p-type CuO nanorods, synthesized by a simple hydrothermal method, were investigated at different atmospheres and oxygen pressures. The CuO nanorods have lower resistance in air than in vacuum, unlike the n-type semiconductors. This is explained in terms of the surface accumulation conduction. Measurements at different oxygen pressures indicate that oxygen has an important effect on the optoelectronic properties of p-type nanomaterials.
|
Received: 20 September 2012
Revised: 24 October 2012
Accepted manuscript online:
|
PACS:
|
81.07.Gf
|
(Nanowires)
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11144010, 11004169, and 11074105), the Research Award Fund for Outstanding Middle-aged and Young Scientist of Shandong Province, China (Grant No. BS2011ZZ004), and the University Student's Science and Technology Innovation Fund of Ludong University, China (Grant No. 12cg030). |
Corresponding Authors:
Wang Fei-Fei
E-mail: ffwang@ldu.edu.cn
|
Cite this article:
Xie De-Hua (谢德华), Wang Fei-Fei (王菲菲), Lü Hao (吕浩), Du Min-Yong (杜敏永), Xu Wen-Jie (徐文杰) Optoelectronic characteristics of CuO nanorods 2013 Chin. Phys. B 22 058103
|
[1] |
Fennimore A M, Yuzvinsky T D, Han W Q, Fuhrer M S, Cumings J and Zettl A 2003 Nature 424 408
|
[2] |
Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias T A and McEuen P L 2004 Nature 431 284
|
[3] |
Wang Z L and Song J H 2006 Science 312 242
|
[4] |
Jacopin G, Rigutti L, Bellei S, Lavenus P, Julien F H, Davydov A V, Tsvetkov D, Bertness K A, Sanford N A, Schlager J B and Tchernycheva M 2012 Nanotechnology 23 325701
|
[5] |
Wang D Q, Zhou Z Y, Zhu R and Ye X Y 2008 Chin. Phys. B 17 3875
|
[6] |
Kim Y C, Yoon C H, Park J, Yoon J, Han N S, Song J K, Park S M and Ha J S 2012 Thin Solid Films 520 6471
|
[7] |
Li Q H, Wan Q, Liang Y X and Wang T H 2004 Appl. Phys. Lett. 84 4556
|
[8] |
Arnold M S, Avouris P, Pan Z W and Wang Z L 2003 J. Phys. Chem. B 107 659
|
[9] |
Kind H, Yan H, Messer B, Law M and Yang P 2002 Adv. Mater. 14 158
|
[10] |
Liu Z, Zhang D, Han S, Li C, Tang T and Jin W 2003 Adv. Mater. 15 1754
|
[11] |
Jiang W, Gao H, Xu L L, Ma J N, Zhang E, Wei P and Lin J Q 2011 Chin. Phys. B 20 037307
|
[12] |
Wang D Q, Zhou Z Y, Zhu R and Ye X Y 2008 Chin. Phys. B 17 3875
|
[13] |
Gao S Y, Yang S X, Shu J, Zhang S X, Li Z D and Jiang K 2008 J. Phys. Chem. C 112 19324
|
[14] |
Li L, Zhan Y, Zheng Q, Zheng Y, Lin X and Li D 2007 Catal. Lett. 118 91
|
[15] |
Zou G F, Li H, Zhang D W, Xiong K, Dong C and Qian Y T 2006 J. Phys. Chem. B 110 1632
|
[16] |
Liu Y, Liao L, Li J and Pan C 2007 J. Phys. Chem. C 111 5050
|
[17] |
Chen J, Deng S Z, Xu N S, Zhang W X, Wen X G and Yang S H 2003 Appl. Phys. Lett. 83 746
|
[18] |
Lu C H, Qi L M, Yang J H, Zhang D Y, Wu N Z and Ma J M 2004 J. Phys. Chem. B 108 17825
|
[19] |
Zhu Y W, Yu T, Cheong F C, Xu X J, Lim C T and Tan V B C 2005 Nanotechnology 16 88
|
[20] |
Chen J, Huang N Y, Deng S Z, She J C and Xu N S 2005 Appl. Phys. Lett. 86 151107
|
[21] |
Hsieh C T and Chen J M 2003 Appl. Phys. Lett. 82 1965
|
[22] |
Jiang X C, Herricks T and Xia Y N 2002 Nano. Lett. 2 1333
|
[23] |
Wang C, Fu X Q, Xue X Y, Wang Y G and Wang T H 2007 Nanotechnology 18 145506
|
[24] |
Wan Q, Li Q H, Chen Y J, Wang T H, He X L and Li J P 2004 Appl. Phys. Lett. 84 3654
|
[25] |
Feng P, Wan Q and Wang T H 2005 Appl. Phys. Lett. 87 213111
|
[26] |
Koffyberg F P and Benko F A 1982 J. Appl. Phys. 53 1173
|
[27] |
Grätzel M 2001 Science 414 338
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|