CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principle study on optical properties of N-La-codoped anatase TiO |
Wang Qing (王青)a, Liang Ji-Feng (梁纪锋)a, Zhang Ren-Hui (张仁辉)b, Li Qiang (李强)c, Dai Jian-Feng (戴剑锋)a |
a School of Science, Lanzhou University of Technology, Lanzhou 730050, China; b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; c Sichuan Provincial Key Laboratory of Computational Physics, Yibin University, Yibin 644000, China |
|
|
Abstract The electronic structures, deformation charge density, dipole moment, and optical properties of N-La-codoped anatase titanium dioxide (TiO2) are studied using the plane-wave ultrasoft pseudopotential method based on density functional theory (DFT). The optical properties of two-ion-doped TiO2are analyzed via electronic structures, deformation charge density, and dipole moment. For the model of N-La-doped TiO2, smaller atom fraction of N and La atoms induces better optical properties. The absorption edges of two doped TiO2 models redshift to the visible-light region.
|
Received: 11 July 2012
Revised: 12 December 2012
Accepted manuscript online:
|
PACS:
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
78.40.Fy
|
(Semiconductors)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50873047). |
Corresponding Authors:
Wang Qing
E-mail: wangqing@lut.cn
|
Cite this article:
Wang Qing (王青), Liang Ji-Feng (梁纪锋), Zhang Ren-Hui (张仁辉), Li Qiang (李强), Dai Jian-Feng (戴剑锋) First-principle study on optical properties of N-La-codoped anatase TiO 2013 Chin. Phys. B 22 057801
|
[1] |
Wang B L and Hu L L 2004 Chin. Phys. 13 1887
|
[2] |
Li C Y, Wang J B and Wang Y Q 2012 Chin. Phys. B 21 098102
|
[3] |
Gole J L, Stout J D, Burda C, Lou Y B and Chen X B 2004 Phys. Chem. B 4 108
|
[4] |
Zhang T H, Piao L Y, Zhao S L, Xu Z, Wu Q and Kong C 2012 Chin. Phys. B 21 118401
|
[5] |
Zhang X C, Zhao L J, Fan C M, Liang Z H and Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese)
|
[6] |
Anpo M, Takeuchi M, kimura T, Hidaka M and Rakhmawaty D 2007 J. Catal. 246 235
|
[7] |
Cheng L, Gan Z H, Liu W and Zhao X Z 2012 Acta Phys. Sin. 61 237107 (in Chinese)
|
[8] |
Gao P, Wu J, Liu Q J and Zhou W F 2010 Chin. Phys. B 19 087103
|
[9] |
Chen W G, Yuan P F, Zhang S, Sun Q, Liang E J and Jia Y 2012 Physica B 407 1038
|
[10] |
Li C, Hou Q Y, Zhang Z D, Zhao C W and Zhang B 2012 Acta Phys. Sin. 61 167103 (in Chinese)
|
[11] |
Fujii H, Inata K, Ohtaki M, Eguchi K and Arai H 2001 J. Mater. Sci. 36 527
|
[12] |
Otaka H, Kira M, Yano K, Ito S, Mitekura H, Kawata T and Matsui F 2004 J. Photochem. Photobiol. A 164 67
|
[13] |
Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M and Cai J 2008 Chin. Phys. B 17 3713
|
[14] |
Hong X G, Du L C, Ye M P and Weng Y X 2004 Chin. Phys. B 13 720
|
[15] |
Zhao Z Y and Liu Q 2008 J. Catal. Lett. 124 111
|
[16] |
Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
|
[17] |
Irie H, Watanabe Y and Hashimoto K 2003 J. Phys. Chem. B 107 5483
|
[18] |
Lindgren T, Mwabora J M, Avendano E, Jonsson J, Hoel A, Granqvist C G and Lindquist S E 2003 J. Phys. Chem. B 107 5709
|
[19] |
Torres G R, Lindgren T, Lu J, Granqvist C G and Lindquist S E 2004 J. Phys. Chem. B 108 5995
|
[20] |
Nakamura R, Tanaka T and Nakato Y 2004 J. Phys. Chem. B 108 10617
|
[21] |
Lee J Y, Park J and Cho J H 2005 Appl. Phys. Lett. 87 11904
|
[22] |
Dai S J, Hu C W and Du L 2008 Acta Chim. Sin. 66 1620
|
[23] |
Lin J and Yu J C 1998 J. Photochem. Photobiol. A 116 63
|
[24] |
Jing L Q, Sun X J, Xin B F, Wang B Q, Cai W M and Fu H G 2004 J. Solid State Chem. 177 3375
|
[25] |
Xu X H, Tian Y and Wu J F 2008 J. WuHan Univ. Technol. 30 543
|
[26] |
Liu P, Li R P and Dong H C 2008 Chin. Rare Earth. 29 5
|
[27] |
Ding P, Liu F M, Zhou C C, Zhong W W, Zhang H, Cai L G and Zeng L G 2010 Chin. Phys. B 19 118102
|
[28] |
Yan Z Y, Zhang D K, Miao H, Shang Y B, Yang J, Ye Y X, Hu X Y, Liu E Z and Fan J 2011 Chin. Phys. B 20 087803
|
[29] |
Li G H, Wu Y C and Zhang L D 2001 Chin. Phys. B 10 148
|
[30] |
Gong S and Liu B G 2012 Chin. Phys. B 21 057104
|
[31] |
Chen Q and Cao H H 2004 Chin. Phys. 13 2121
|
[32] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter. 14 2717
|
[33] |
Lu Z H, Ma D W, Zhang J, Xu G L and Yang Z X 2012 Chin. Phys. B 21 047505
|
[34] |
Jeremy K B, Timothy H and Gordon J M 1987 J. Am. Chem. Soc. 109 3639
|
[35] |
Zhang R H, Wang Q, Liang J, Li Q, Dai J F and Li W X 2011 Physica B 407 2709
|
[36] |
Sato J, Kobayashi H and Inoue Y 2003 J. Phys. Chem. B 107 7970
|
[37] |
Gao P, Zhang X J, Zhou W F, Wu J and Liu Q J 2010 J. Semicond. 31 032001
|
[38] |
Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H and Inoue Y 2004 J. Phys. Chem. B 108 4369
|
[39] |
Wei H Y, Wu Y S, Lun N and Zhao F 2004 J. Mater. Sci. 39 1305
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|