Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047702    DOI: 10.1088/1674-1056/22/4/047702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of mode coupling on the admittance of an AT-cut quartz thickness-shear resonator

He Hui-Jing (何慧晶)a, Yang Jia-Shi (杨嘉实)a, Zhang Wei-Ping (张卫平)b, Wang Ji (王骥)c
a Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA;
b 1785 Pebblewood Lane, Hoffman Estates, IL 60195, USA;
c Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
Abstract  We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate thickness-shear mode resonator. Mindlin's two-dimensional equations for piezoelectric plates are employed. Electrically forced vibration solutions are obtained for three cases: pure thickness-shear mode alone; two coupled modes of thickness shear and flexure; and three coupled modes of thickness shear, flexure, and face shear. Admittance is calculated and its dependence on the driving frequency and the length/thickness ratio of the resonator is examined. Results show that near the thickness-shear resonance, admittance assumes maxima, and that for certain values of the length/thickness ratio, the coupling to flexure causes severe admittance drops, while the coupling to the face-shear mode causes additional admittance changes that were previously unknown and hence are not considered in current resonator design practice.
Keywords:  quartz      plate      resonance      resonator  
Received:  23 June 2012      Revised:  09 September 2012      Accepted manuscript online: 
PACS:  77.65.Fs (Electromechanical resonance; quartz resonators)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 10932004, 11072116, and 10772087) and the Doctoral Program Fund of Ministry of Education of China (Grant No. 20093305110003/JW). Additional Funds were from the Sir Y. K. Pao Chair Professorship, the K. C. Wong Magna Fund through Ningbo University, and the K. C. Wong Education Foundation in Hong Kong. The project also supported in part by the US Army Research Laboratory/US Army Research Office (Grant No. W911NF-10-1-0293).
Corresponding Authors:  Yang Jia-Shi     E-mail:  jyang1@unl.edu

Cite this article: 

He Hui-Jing (何慧晶), Yang Jia-Shi (杨嘉实), Zhang Wei-Ping (张卫平), Wang Ji (王骥) Effects of mode coupling on the admittance of an AT-cut quartz thickness-shear resonator 2013 Chin. Phys. B 22 047702

[1] Mindlin R D 1951 J. Appl. Phys. 22 316
[2] Mindlin R D and Lee P C Y 1966 Int. J. Solids Structures 2 125
[3] Mindlin R D and Spencer W J 1967 J. Acoust. Soc. Am. 42 1268
[4] Tiersten H F 1985 J. Acoust. Soc. Am. 78 1684
[5] Yong Y K and Stewart J T 1991 IEEE Trans. Ultrason., Ferroelect., Freq. Control 38 67
[6] Wang J and Zhao W H 2005 IEEE Trans. Ultrason., Ferroelect., Freq. Control 52 2023
[7] Wang J N, Hu Y T and Yang J S 2010 IEEE Trans. Ultrason., Ferroelect., Freq. Control 57 1146
[8] Chen G J, Wu R X, Wang J, Du J K and Yang J S 2012 IEEE Trans. Ultrason., Ferroelect., Freq. Control 59 811
[9] Wang J and Yang J S 2000 Appl. Mech. Rev. 53 87
[10] Mindlin R D 1952 J. Appl. Phys. 23 83
[11] Tiersten H F and Mindlin R D 1962 Quart. Appl. Math. 20 107
[12] Bleustein J L and Tiersten H F 1968 J. Acoust. Soc. Am. 43 1311
[13] Mindlin R D 1974 Int. J. Solids Structures 10 453
[14] Zhang W P 1998 Proc. 1998 IEEE Int. Freq. Control Sym. 981
[15] Zhang W P and Doyle M 2000 Mechanics of Electromagnetic Materials and Structures, eds.Yang J S, Maugin G A (Amsterdam: IOS) p. 147
[16] Lee P C Y and Wang J 1996 J. Appl. Phys. 79 3411
[17] Lee P C Y and Lin W S 1998 J. Appl. Phys. 83 7822
[18] Wang J, Yu J D, Yong Y K and Imai T 2000 Int. J. Solids Structures 37 5653
[19] Wang J, Zhao W H and Du J K 2006 Ultrasonics. 44 869
[20] Zhang C L, Chen W Q and Yang J S 2009 Int. J. Appl. Elect. Mech. 31 207
[21] Yong Y K, Patel M S and Tanaka M 2010 IEEE Trans. Ultrason., Ferroelect., Freq. Control 57 1831
[22] Mindlin R D 1961 Quart. Appl. Math. 19 51
[23] Mindlin R D 1972 Int. J. Solids Structures 8 895
[24] Lee P C Y, Syngellakis S and Hou J P 1987 J. Appl. Phys. 61 1249
[25] Yang J S 2006 The Mechanics of Piezoelectric Structures (Singapore: World Scientific) Chap. 2 and Chap. 4
[26] Wang W Y, Zhang C, Zhang Z T, Liu Y and Feng G P 2009 Chin. Phys. B 18 795
[27] Ma T F, Zhang C, Feng G P and Jiang X N 2010 Chin. Phys. B 19 087701
[28] Ma T F, Zhang C, Jiang X N and Feng G P 2011 Chin. Phys. B 20 057701
[29] Tiersten H F 1969 Linear Piezoelectric Plate Vibrations (New York: Plenum) p. 186
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[7] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[8] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[9] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[10] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[11] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[12] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[13] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[14] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[15] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
No Suggested Reading articles found!