Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030511    DOI: 10.1088/1674-1056/22/3/030511
GENERAL Prev   Next  

Novel loop-like solitons for generalized Vakhnenko equation

Zhang Min (张旻)a, Ma Yu-Lan (马玉兰)a, Li Bang-Qing (李帮庆)a b
a School of Science, Beijing Technology and Business University, Beijing 100048, China;
b School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China
Abstract  A nontraveling wave solution of a generalized Vakhnenko equation arising from the high-frequent wave motion in a relaxing medium is derived via the extended Riccati mapping method. The solution includes an arbitrary function of an independent variable. Based on the solution, two hyperbolic functions are chosen to construct new solitons. Novel single-loop-like and double-loop-like solitons are found for the equation.
Keywords:  generalized Vakhnenko equation      extended Riccati mapping method      nontraveling wave solution      loop-like soliton  
Received:  03 July 2012      Revised:  03 September 2012      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the Scientific Research Common Program of Beijing Municipal Commission of Education, China (Grant No. KM201010011001), PHR (Grant No. 201106206), the Funding Project for Innovation on Science, Technology and Graduate Education in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality, China (Grant Nos. 201098, PXM2012_-014213_000087, PXM2012_-014213_-000037, and PXM2012_-014213_-000079).
Corresponding Authors:  Ma Yu-Lan     E-mail:  mayl@th.btbu.edu.cn

Cite this article: 

Zhang Min (张旻), Ma Yu-Lan (马玉兰), Li Bang-Qing (李帮庆) Novel loop-like solitons for generalized Vakhnenko equation 2013 Chin. Phys. B 22 030511

[1] Vakhnenko V O 1992 J. Math. Phys. A 25 4181
[2] Vakhnenko V O 1999 J. Math. Phys. 40 2011
[3] Parkes E J 1993 J. Phys. A 26 6469
[4] Vakhnenko V O and Parkes E J 1998 Nonlinearity 11 1457
[5] Vakhnenko V O, Parkes E J and Michtchenko A V 2000 Int. J. Differential Equations Appl. 1 429
[6] Morrison A J, Parkes E J and Vakhnenko V O 1999 Nonlinearity 12 1427
[7] Li J B 2007 Science in China Series A: Math. 50 773
[8] Li W A, Chen H and Zhang G C 2009 Chin. Phys. B 18 400
[9] Wu Y Y, Wang C and Liao S J 2005 Chaos Soliton. Fract. 23 1733
[10] Ma Y L and Li B Q 2010 J. Math. Phys. 51 063512
[11] Morrison A J and Parkes E J 2003 Chaos Soliton. Fract. 16 13
[12] Vakhnenko V O, Parkes E J and Morrison A J 2003 Chaos Soliton. Fract. 17 683
[13] Victor K K, Thomas B B and Kofane T C 2008 Chin. Phys. Lett. 25 425
[14] Mo J Q 2009 Chin. Phys. B 18 4608
[15] Liu Y P, Li Z B and Wang K C 2007 Chaos Soliton. Fract. 31 117
[16] Ma Y L, Li B Q and Wang C 2009 Appl. Math. Comput. 211 102
[17] Ma Y L and Li B Q 2010 Appl. Math. Comput. 216 2137
[18] Li B Q, Ma Y L and Sun J Z 2010 Appl. Math. Comput. 216 3522
[19] Ma Y L and Li B Q 2012 Appl. Math. Comput. 219 2212
[20] Fan E G 2002 Phys. Lett. A 300 243
[21] Zheng C L, Fang J P and Chen L Q 2005 Acta Phys. Sin. 54 676 (in Chinese)
[22] Fei J X and Zheng C L 2012 Chin. Phys. B 21 070304
[23] Zheng C L and Li Y 2012 Chin. Phys. B 21 070305
[24] Chen Y, Li B and Zhang H Q 2003 Chin. Phys. 12 940
[25] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 040301
[26] Ma S H, Fang J P, Ren Q B and Yang Z 2012 Chin. Phys. B 21 050511
[27] Ma S H, Lei Y and Fang J P 2012 Acta Phys. Sin. 61 180505 (in Chinese)
[28] Zeng W L, Ma S H and Ren Q B 2012 Acta Phys. Sin. 61 110508 (in Chinese)
[29] Li B Q, Ma Y L and Xu M P 2010 Acta Phys. Sin. 59 1409 (in Chinese)
[30] Li B Q and Ma Y L 2010 Z. Naturforsch A 65a 518
[31] Li B Q and Ma Y L 2011 Commun. Nonlinear Sci. Numer. Simul. 16 144
[32] Wang M L Zhou Y B and Li Z B 1996 Phys. Lett. A 216 67
[33] Parkes E J 2007 Chaos Soliton. Fract. 31 602
[34] Li B Q, Ma Y L, Wang C, Xu M P and Li Y 2011 Acta Phys. Sin. 60 060203 (in Chinese)
[35] Yang P, Chen Y and Li Z B 2010 Commun. Theor. Phys. 53 1027
[36] Shen S F 2006 Acta Phys. Sin. 55 1016 (in Chinese)
[37] Sakovich A and Sakovich S 2006 J. Phys. A: Math. Gen. 39 L361
[38] Ma Y L and Li B Q 2012 J. Appl. Math. Comput. 40 683
[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[6] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[7] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[8] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[9] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[10] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[11] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[12] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[13] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[14] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!