|
|
Optimal transport of cold atoms by modulating the velocity of traps |
Han Jing-Shan (韩景珊), Xu Xin-Ping (许忻平), Zhang Hai-Chao (张海潮), Wang Yu-Zhu (王育竹) |
Key Laboratory for Quantum Optics, Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract This work experimentally demonstrates a new method of optimizing the transport of cold atoms via modulating the velocity profile imposed on a magnetic quadrupole trap. The trap velocity and corresponding modulation are controlled by varying the currents of two pairs of anti-Helmholtz coils. Cold 87Rb atoms are transported in a non-adiabatic regime over 22 mm in 200 ms. For the transported atoms their final-vibration amplitude dependences of modulation period number, depth, and initial phase are investigated. With modulation period n=5, modulation depth K=0.55, and initial phase φ=0, cold atom clouds with more atom numbers, smaller final-vibration amplitude, and lower temperature are efficiently transported. Theoretical analysis and numerical simulation are also provided, which are in good agreement with experimental results.
|
Received: 15 June 2012
Revised: 30 July 2012
Accepted manuscript online:
|
PACS:
|
37.10.Vz
|
(Mechanical effects of light on atoms, molecules, and ions)
|
|
37.10.Gh
|
(Atom traps and guides)
|
|
37.90.+j
|
(Other topics in mechanical control of atoms, molecules, and ions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974210) and the National Basic Research Program of China (Grant No. 2011CB921504). |
Corresponding Authors:
Zhang Hai-Chao, Wang Yu-Zhu
E-mail: zhanghc@siom.ac.cn; yzwang@mail.shcnc.ac.cn
|
Cite this article:
Han Jing-Shan (韩景珊), Xu Xin-Ping (许忻平), Zhang Hai-Chao (张海潮), Wang Yu-Zhu (王育竹) Optimal transport of cold atoms by modulating the velocity of traps 2013 Chin. Phys. B 22 023702
|
[1] |
Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 322
|
[2] |
Sauer J A, Fortier K M, Chang M S, Hamley C D and Chapman M S 2004 Phys. Rev. A 69 051804
|
[3] |
Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D and Reichel J 2007 Nature 450 272
|
[4] |
Greiner M, Bloch I, Hänsch T W and Esslinger T 2001 Phys. Rev. A 63 031401
|
[5] |
Gierling M, Schneeweiss P, Visanescu G, Federsel P, Häffner M, Kern D P, Judd T E, Günther A and Fortágh J 2011 Nature Nanotechnology 6 446
|
[6] |
Chen D Y, Zhang H C, Xu X P, Li T and Wang Y Z 2010 Appl. Phys. Lett. 96 134103
|
[7] |
Couvert A, Kawalec T, Reinaudi G and Guéry-Odelin D 2008 Europhys. Lett. 83 13001
|
[8] |
Gustavson T L, Chikkatur A P, Leanhardt A E, Görlitz A, Gupta S, Pritchard D E and Ketterle W 2001 Phys. Rev. Lett. 88 020401
|
[9] |
Prestage J D, Tjoelker R L, Dick G J and Maleki L 1993 Proceedings of the 1993 IEEE Frequency Control Symposium, June 2-4 1993, Salt Lake City, USA, p. 144
|
[10] |
He J, Yang B D, Zhang T C and Wang J M 2011 Chin. Phys. B 20 073701
|
[11] |
Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A and Meschede D 2003 Phys. Rev. Lett. 91 213002
|
[12] |
Lewandowski H J, Harber D M, Whitaker D L and Cornell E A 2003 J. Low Temp. Phys. 132 309
|
[13] |
Lahaye T, Reinaudi G, Wang Z, Couvert A and Guéry-Odelin D 2006 Phys. Rev. A 74 033622
|
[14] |
Huber G, Deuschle T, Schnitzler W, Reichle R, Singer K and Schmidt-Kaler F 2008 New J. Phys. 10 013004
|
[15] |
Crick D R, Donnellan S, Ananthamurthy S, Thompson R C and Segal D M 2010 Rev. Sci. Instrum. 81 013111
|
[16] |
Hänsel W, Hommelhoff P, Hänsch T W and Reichel J 2001 Nature 413 498
|
[17] |
Schrader D, Kuhr S, Alt W, Müller M, Gomer V and Meschede D 2001 Appl. Phys. B 73 819
|
[18] |
Rowe M A, Ben-Kish A, DeMarco B, Leibfried D, Meyer V, Beall J, Britton J, Hughes J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2002 Quantum Inf. Comput. 4 257
|
[19] |
Lau H K and James D F V 2001 Phys. Rev. A 83 062330
|
[20] |
Chen Xi, Torrontegui E, Dionisis S, Li J S and Muga J G 2011 Phys. Rev. A 84 043415
|
[21] |
Torrontegui E, Ibáñez S, Chen Xi, Ruschhaupt A, Guéry-Odelin D and Muga J G 2011 Phys. Rev. A 83 013415
|
[22] |
Torrontegui E, Chen X, Modugno M, Schmidt S, Ruschhaupt A and Muga J G 2012 New J. Phys. 14 013031
|
[23] |
Reichle R, Leibfried D, Blakestad R B, Britton J, Jost J D, Knill E, Langer C, Ozeri R, Seidelin S and Wineland D J 2006 Fortschr. Phys. 54 666
|
[24] |
Ketterle W, Durfee D S and Stamper-Kurn D M 1999 Bose-Einstein Condensation in Atomic Gases (Amsterdam: IOS) p. 12
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|