Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 023702    DOI: 10.1088/1674-1056/22/2/023702
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optimal transport of cold atoms by modulating the velocity of traps

Han Jing-Shan (韩景珊), Xu Xin-Ping (许忻平), Zhang Hai-Chao (张海潮), Wang Yu-Zhu (王育竹)
Key Laboratory for Quantum Optics, Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  This work experimentally demonstrates a new method of optimizing the transport of cold atoms via modulating the velocity profile imposed on a magnetic quadrupole trap. The trap velocity and corresponding modulation are controlled by varying the currents of two pairs of anti-Helmholtz coils. Cold 87Rb atoms are transported in a non-adiabatic regime over 22 mm in 200 ms. For the transported atoms their final-vibration amplitude dependences of modulation period number, depth, and initial phase are investigated. With modulation period n=5, modulation depth K=0.55, and initial phase φ=0, cold atom clouds with more atom numbers, smaller final-vibration amplitude, and lower temperature are efficiently transported. Theoretical analysis and numerical simulation are also provided, which are in good agreement with experimental results.
Keywords:  transport of cold atoms      modulation      velocity profile  
Received:  15 June 2012      Revised:  30 July 2012      Accepted manuscript online: 
PACS:  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  37.10.Gh (Atom traps and guides)  
  37.90.+j (Other topics in mechanical control of atoms, molecules, and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974210) and the National Basic Research Program of China (Grant No. 2011CB921504).
Corresponding Authors:  Zhang Hai-Chao, Wang Yu-Zhu     E-mail:  zhanghc@siom.ac.cn; yzwang@mail.shcnc.ac.cn

Cite this article: 

Han Jing-Shan (韩景珊), Xu Xin-Ping (许忻平), Zhang Hai-Chao (张海潮), Wang Yu-Zhu (王育竹) Optimal transport of cold atoms by modulating the velocity of traps 2013 Chin. Phys. B 22 023702

[1] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 322
[2] Sauer J A, Fortier K M, Chang M S, Hamley C D and Chapman M S 2004 Phys. Rev. A 69 051804
[3] Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D and Reichel J 2007 Nature 450 272
[4] Greiner M, Bloch I, Hänsch T W and Esslinger T 2001 Phys. Rev. A 63 031401
[5] Gierling M, Schneeweiss P, Visanescu G, Federsel P, Häffner M, Kern D P, Judd T E, Günther A and Fortágh J 2011 Nature Nanotechnology 6 446
[6] Chen D Y, Zhang H C, Xu X P, Li T and Wang Y Z 2010 Appl. Phys. Lett. 96 134103
[7] Couvert A, Kawalec T, Reinaudi G and Guéry-Odelin D 2008 Europhys. Lett. 83 13001
[8] Gustavson T L, Chikkatur A P, Leanhardt A E, Görlitz A, Gupta S, Pritchard D E and Ketterle W 2001 Phys. Rev. Lett. 88 020401
[9] Prestage J D, Tjoelker R L, Dick G J and Maleki L 1993 Proceedings of the 1993 IEEE Frequency Control Symposium, June 2-4 1993, Salt Lake City, USA, p. 144
[10] He J, Yang B D, Zhang T C and Wang J M 2011 Chin. Phys. B 20 073701
[11] Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A and Meschede D 2003 Phys. Rev. Lett. 91 213002
[12] Lewandowski H J, Harber D M, Whitaker D L and Cornell E A 2003 J. Low Temp. Phys. 132 309
[13] Lahaye T, Reinaudi G, Wang Z, Couvert A and Guéry-Odelin D 2006 Phys. Rev. A 74 033622
[14] Huber G, Deuschle T, Schnitzler W, Reichle R, Singer K and Schmidt-Kaler F 2008 New J. Phys. 10 013004
[15] Crick D R, Donnellan S, Ananthamurthy S, Thompson R C and Segal D M 2010 Rev. Sci. Instrum. 81 013111
[16] Hänsel W, Hommelhoff P, Hänsch T W and Reichel J 2001 Nature 413 498
[17] Schrader D, Kuhr S, Alt W, Müller M, Gomer V and Meschede D 2001 Appl. Phys. B 73 819
[18] Rowe M A, Ben-Kish A, DeMarco B, Leibfried D, Meyer V, Beall J, Britton J, Hughes J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2002 Quantum Inf. Comput. 4 257
[19] Lau H K and James D F V 2001 Phys. Rev. A 83 062330
[20] Chen Xi, Torrontegui E, Dionisis S, Li J S and Muga J G 2011 Phys. Rev. A 84 043415
[21] Torrontegui E, Ibáñez S, Chen Xi, Ruschhaupt A, Guéry-Odelin D and Muga J G 2011 Phys. Rev. A 83 013415
[22] Torrontegui E, Chen X, Modugno M, Schmidt S, Ruschhaupt A and Muga J G 2012 New J. Phys. 14 013031
[23] Reichle R, Leibfried D, Blakestad R B, Britton J, Jost J D, Knill E, Langer C, Ozeri R, Seidelin S and Wineland D J 2006 Fortschr. Phys. 54 666
[24] Ketterle W, Durfee D S and Stamper-Kurn D M 1999 Bose-Einstein Condensation in Atomic Gases (Amsterdam: IOS) p. 12
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[4] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[9] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[10] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[14] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[15] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
No Suggested Reading articles found!