ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Effects of interplay between metal subwavelength slits on extraordinary optical transmission |
Wei Fei-Fei (魏菲菲)a, Wang Huai-Yu (王怀玉)b, Zhou Yun-Song (周云松)a |
a Department of Physics, Capital Normal University, Beijing 100037, China; b Department of Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract In this paper we study the extraordinary optical transmission of one-dimensional multi-slit in an ideal metal film. The transmissivity is calculated as a function of various structural parameters. The transmissivity oscillates, with the period being just the light wavelength, as a function of the spacing between slits. As the number of slits increases, the transmissivity varies in one of the three ways. It can increase, attenuate, or remain basically unchanged, depending on the spacing between slits. Each way is in an oscillatory manner. The slit interaction responsible for the oscillating transmission strength that depends on slit spacing is the subject of more detailed investigation. The interaction most intuitively manifests as a current distribution in the metal surface between slits. We find that this current is attenuated in an oscillating fashion from the slit corners to the center of the region between two adjacent slits, and we present a mathematical expression for its waveform.
|
Received: 16 July 2012
Revised: 29 August 2012
Accepted manuscript online:
|
PACS:
|
42.15.Eq
|
(Optical system design)
|
|
42.79.Dj
|
(Gratings)
|
|
78.68.+m
|
(Optical properties of surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074145, 10874124, and 61275028). |
Corresponding Authors:
Wang Huai-Yu, Zhou Yun-Song
E-mail: wanghuaiyu@mail.tsinghua.edu.cn; 263zys@263.net
|
Cite this article:
Wei Fei-Fei (魏菲菲), Wang Huai-Yu (王怀玉), Zhou Yun-Song (周云松) Effects of interplay between metal subwavelength slits on extraordinary optical transmission 2013 Chin. Phys. B 22 024201
|
[1] |
Petit R 1908 Electromagnetic Theory of Gratings (Berlin: Springer)
|
[2] |
Sheng S, Stepleman R S and Sanda P N 1982 Phys. Rev. B 26 2907
|
[3] |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
[4] |
Garcia-Vidal F J and Pendry J B 1996 Phys. Rev. Lett. 77 1163
|
[5] |
Porto J A, Garcia-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 2845
|
[6] |
Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Degiron A and Ebbesen T W 2003 Phys. Rev. Lett. 90 167401
|
[7] |
Garcia-Vidal F J, Lezec H J, Ebbesen T W and Martin-Moreno L 2003 Phys. Rev. Lett. 90 213901
|
[8] |
Yang F and Sambles J R 2002 Phys. Rev. Lett. 89 063901
|
[9] |
Lalanne P, Hugonin J P and Rodier J C 2005 Phys. Rev. Lett. 95 263902
|
[10] |
Genet C and Ebbesen T W 2007 Nature 445 39
|
[11] |
Liu H and Lalanne P 2008 Nature 452 728
|
[12] |
Sturman B, Podivilov E and Gorkunov M 2010 Phys. Rev. B 82 115419
|
[13] |
Wang B and Lalanne P 2010 J. Opt. Soc. Am. A 27 1432
|
[14] |
Zhou L, Huang C, Wu S, Yin X, Wang Y, Wang Q and Zhu Y 2010 Appl. Phys. Lett. 97 011905
|
[15] |
Babuty A, Bousseksou A, Tetienne J P, Moldovan D I, Sirtori C, Beaudoin G, Sagnes I, Wilde Y D and Colombelli R 2010 Phys. Rev. Lett. 104 226806
|
[16] |
Zhou Y S, Gu B Y and Wang H Y 2010 Phys. Rev. A 81 015801
|
[17] |
Bozhevolnyi S I 2001 Phys. Rev. Lett. 86 3008
|
[18] |
Tian H, Liu J W, Qiu K, Song J and Wang D J 2012 Chin. Phys. B 21 098504
|
[19] |
Tang T J, Zhou F and Li Y 2012 Chin. Phys. B 21 064201
|
[20] |
Bashir Ahmed Tahira, Rashid Ahmedb, Ashiqa M G B, Afaq Ahmedc and Saeeda M A 2012 Chin. Phys. B 21 044201
|
[21] |
Song D L, Chang J, Wang Q F, He W B and Cao Jiao 2011 Chin. Phys. B 20 074201
|
[22] |
Takakura Y 2001 Phys. Rev. Lett. 86 5601
|
[23] |
Yang F Z and Sambles J R 2002 Phys. Rev. Lett. 89 063901
|
[24] |
Yang F and Sambles J R 2002 Appl. Phys. Lett. 81 2047
|
[25] |
Treacy M M J 2002 Phys. Rev. B 66 195105
|
[26] |
Bravo-Abad J, Martin-Moreno L and Garcia-Vidal F J 2004 Phys. Rev. E 69 026601
|
[27] |
Zhou Y S, Gu B Y, Wang H Y and Lan S 2009 Europhys. Lett. 85 24005
|
[28] |
Zhou Y S, Gu B Y, Wang H Y and Lan S 2010 Chin. Phys. Lett. 27 037801
|
[29] |
Cao Q and Lalanne P 2002 Phys. Rev. Lett. 88 057403
|
[30] |
Koerkamp K J K, Enoch S, Segerink F B, Van Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
|
[31] |
Dintinger J, Klein S, Bustos F, Barners W L and Ebbesen T W 2005 Phys. Rev. B 71 035424
|
[32] |
Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T W 2004 Phys. Rev. Lett. 92 107401
|
[33] |
Gordon R, Brolo A G, McKinnon A, Rajora A, Leathem B and Kavanagh K L 2004 Phys. Rev. Lett. 92 037401
|
[34] |
Collin S, Vincent G, Haidar R, Bardou N, Rommeluere S and Pelouard J L 2010 Phys. Rev. Lett. 104 027401
|
[35] |
Zheng G G, Jiang J L, Xian F L, Qiang H X, Wu H and Li X Y 2011 Chin. Phys. B 20 094201
|
[36] |
Zhao H J, Peng Y J, Tan J, Liao C R, Li P and Peng X X 2009 Chin. Phys. B 18 5326
|
[37] |
Nesterov M L, Martin-Cano D, Fernandez-Dominguez A I, Moreno E, Martin-Moreno L and Garcia-Vidal F J 2010 Opt. Lett. 35 423
|
[38] |
Luo M, Liu Q H and Guo J 2010 J. Opt. Soc. Am. B 27 560
|
[39] |
Ye Y Q and Jin Y 2009 Phys. Rev. E 80 036606
|
[40] |
Zhou Y S, Gu B Y, Lan S and Zhao L M 2008 Phys. Rev. B 78 081404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|