Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 020303    DOI: 10.1088/1674-1056/22/2/020303
GENERAL Prev   Next  

New optical field operator expansion in number state representation

Yang Yang (杨阳)a, Fan Hong-Yi (范洪义)b
a Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  By virtue of the Weyl ordering method, we find a new formalism of optical field operator expansion in number state representation. Miscillaneous optical fields' (coherent state, squeezed field, Wigner operator, etc.) new expansions are therfore exhibited. Some new generating function of special polynomials are derived herewith.
Keywords:  Weyl ordered method      number state representation      special polynomial  
Received:  09 August 2012      Revised:  29 August 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.Ar  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975125 and 11175113).
Corresponding Authors:  Yang Yang     E-mail:  yangyang@mail.ustc.edu.cn

Cite this article: 

Yang Yang (杨阳), Fan Hong-Yi (范洪义) New optical field operator expansion in number state representation 2013 Chin. Phys. B 22 020303

[1] Wigner E P 1932 Phys. Rev. 40 749
[2] Klauder J R and Skagerstam B S 1985 Coherent States (Singerpore: World Scientific)
[3] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) p. 72
[4] Glauber R J 1963 Phys. Rev. 130 2529
[5] Glauber R J 1963 Phys. Rev. 131 2766
[6] Weyl H 1927 Z. Phys. 46 1
[7] Xu Y J, Fan H Y and Liu Q Y 2010 Chin. Phys. B 19 020303
[8] Fan H Y and Yuan H C 2010 Chin. Phys. B 19 070301
[9] Fan H Y 1992 J. Phys. A: Math. Gen. 25 3443
[10] Fan H Y 2008 Ann. Phys. 323 1502
[11] Fan H Y 2010 Chin. Phys. B 19 050303
[12] Dirac P A M 1966 Lectures on Quantum Field Theory (New York: Academic Press)
[13] Fan H Y 1993 Phys. Rev. A 47 4521
[14] Fan H Y, Xu X X, Yuan H C, Wang S, Wang Z, Xu P and Jiang N W 2011 Chin. Phys. B 20 070301
[1] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[2] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[6] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[9] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[10] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[13] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[14] Topology of a parity-time symmetric non-Hermitian rhombic lattice
Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智). Chin. Phys. B, 2022, 31(1): 010312.
[15] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
No Suggested Reading articles found!