|
|
Bound state solutions of d-dimensional Schrödinger equation with Eckart potential plus modified deformed Hylleraas potential |
Akpan N. Ikot, Oladunjoye A. Awoga, Akaninyene D. Antia |
Theoretical Physics Group, Department of Physics, University of Uyo, Uyo, Nigeria |
|
|
Abstract We study the d-dimensional Schrödinger equation for Eckart plus modified deformed Hylleraas potentials using the generalized parametric form of Nikiforov-Uvarov method. We obtain energy eigenvalues and the corresponding wave function expressed in terms of Jacobi polynomial. We also discuss two special cases of this potential comprised of the Hulthen potential and the Rosen-Morse potential in three dimensions. Numerical results are also computed for the energy spectrum and the potentials.
|
Received: 01 June 2012
Revised: 28 June 2012
Accepted manuscript online:
|
PACS:
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Ca
|
(Formalism)
|
|
Corresponding Authors:
Akpan N. Ikot, Oladunjoye A. Awoga, Akaninyene D. Antia
E-mail: ndemikot2005@yahoo.com; ola.awoga@yahoo.com; antiacauchy@yahoo.com
|
Cite this article:
Akpan N. Ikot, Oladunjoye A. Awoga, Akaninyene D. Antia Bound state solutions of d-dimensional Schrödinger equation with Eckart potential plus modified deformed Hylleraas potential 2013 Chin. Phys. B 22 020304
|
[1] |
Gomul O and Kocak M 2001 arxiv: Quant-Ph/0106144
|
[2] |
Oyewumi K J, Akinpelu F O and Agboola A.D 2008 Int. J. Theor. Phys. 47 1039
|
[3] |
Ikot A N and Akpabio L E 2010 Appl. Phys. Res. 2 202
|
[4] |
Ikot A N, Akpabio L E and Umoren E B 2011 J. Sci. Res. 3 25
|
[5] |
Hassanabadi H, Zurrinkamar S and Rahimov H 2011 Commun. Theor. Phys. 56 423
|
[6] |
Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
|
[7] |
Ikot A N 2011 Afr. Phys. Rev. 6 221
|
[8] |
Zhang A P, Qiang W C and Ling Y W 2006 Chin. Phys. Lett. 26 100302
|
[9] |
Wei G F, Long C Y, Duan X Y and Dong S H 2008 Phys. Scr. 77 035001
|
[10] |
Qiang W C and Dong S H 2009 Phys. Scr. 79 045004
|
[11] |
Bayrak O, Kocak G and Boztosun I 2006 J. Phys A: Math. Gen. 39 11521
|
[12] |
Dong S H and Garcia-Ravelo J 2007 Phys. Scr. 75 307
|
[13] |
Jia C S, Guo P and Peng X L 2006 J. Phys. A: Math. Gen. 39 7737
|
[14] |
Taskin F and Kocak G 2010 Chin. Phys. B 19 090314
|
[15] |
Ikot A N, Akpabio L E and Obu J A 2011 J. Vect. Relat. 6 1
|
[16] |
Ikot A N, Awoga O A, Akpabio L E and Antia A D 2011 Elixir. Vib. Spec. 33 2303
|
[17] |
Ikot A N, Antia A D, Akpabio L E and Obu J A 2011 J. Vect. Relat. 6 65
|
[18] |
Yasuk F, Durwins A and Boztsun I 2006 J. Math. Phys. 47 083202
|
[19] |
Falaye B J and Oyewumi K J 2011 Afri. Phys. Rev. 6 0025
|
[20] |
Ikhadair S M and Sever R 2007 J. Math. Chem. 42 461
|
[21] |
Ikhadair S M and Sever R 2007 Int. J. Theor. Phys. 46 1643
|
[22] |
Ikhadair S M 2008 Chin. J. Phys. 46 291
|
[23] |
Ikhadair S M and Sever R 2008 Cent. Eur. J. Phys. 6 685
|
[24] |
Varshni Y P 1957 Rev. Mod. Phys. 29 664
|
[25] |
Hylleraas E A 1935 J. Chem. Phys. 3 595
|
[26] |
Cardose J L and Alvarez-Nodarse R 2003 J. Phys. A: Math. Gen. 36 2055
|
[27] |
Dong S H and Sun G H 2003 Phys. Lett. A 314 261
|
[28] |
Dong S H, Chen C Y and Cassou M L 2005 J. Phys. B 38 2211
|
[29] |
Oyewumi K J and Ogunsola A W 2004 J. Pure Appl. Sci. 10 343
|
[30] |
Paz G 2011 Eur. J. Phys. 22 337
|
[31] |
Dong S H, Sun G H and Popov D 2003 J. Math. Phys. 44 4467
|
[32] |
Ikhadair S M and Sever R 2008 Mol. Struc: THEOCHEM 855 13
|
[33] |
Dong S H and Ma Z Q 2002 Phys. Rev. A 65 042717
|
[34] |
Nikiforov A F and Uvarov V B 1998 Special Functions of Mathematical Physics (Basel: Birkhauser)
|
[35] |
Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
|
[36] |
Arda A, Sever R and Tezcan C 2010 Chin. J. Phys. 48 27
|
[37] |
Hassanabadi H, Zarrinkamar S and Rajabi A A 2011 Commun. Theor. Phys. 55 541
|
[38] |
Dong S H, Qiang W C, Sun G H and Bezerra V B 2007 J. Phys. A: Math. Theor. 40 10535
|
[39] |
Ikhadair S M 2009 Eur. Phys. J. A 39 307
|
[40] |
Debnath S and Biswas B 2012 EJTP 26 191
|
[41] |
Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (New York: Dover)
|
[42] |
Polyanin A D and Manzhirov A V 1998 Handbook of Integral Equations (Boca Raton: CRC Press)
|
[43] |
Gradshteyn I S and Rhyzhik I M 2007 Table of Integrals, Series and Product (Burlington: Elsevier)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|