Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 128506    DOI: 10.1088/1674-1056/22/12/128506
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Flexible white top-emitting organic light-emitting diode with a MoOx roughness improvement layer

Chen Shu-Fen (陈淑芬)a, Guo Xu (郭旭)a, Wu Qiang (邬强)a, Zhao Xiao-Fei (赵晓飞)a, Shao Ming (邵茗)a, Huang Wei (黄维)a b
a Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, China;
b Nanjing University of Technology, Nanjing 211816, China
Abstract  In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, the surface roughness of the PET substrate can be reduced to a very small value of 0.273 nm (much less than 0.585 nm of the pure PET). Flexible white top-emitting organic light-emitting diodes (TEOLEDs) with red and blue dual phosphorescent emitting layers are constructed based on a low-reflectivity Sm/Ag semi-transparent cathode. The flexible white emission exhibits the best luminance and current injection characteristics with the 100-nm-thick MoOx buffer layer and this result indicates that a smooth substrate is beneficial to the enhancement of device electrical and electroluminescence performances. However, the white TEOLED with a 50-nm-thick MoOx buffer layer exhibits a maximum current efficiency of 4.64 cd/A and a power efficiency of 1.9 lm/W, slightly higher than those with a 100-nm MoOx buffer layer, which is mainly due to an obvious intensity enhancement but limited current increases in 50-nm MoOx-based white TEOLED. The change amplitudes of the Commission International de l’Eclairage (CIE) chromaticity coordinates are less than (0.016, 0.005) for all devices in a wide luminance range over 100 cd/m2, indicating an excellent color stability in our white flexible TEOLEDs. Additionally, the flexible white TEOLED with an MoOx buffer layer shows excellent flexibility to withstand more than 500 bending times under a curvature radius of approximately 9 mm. Research demonstrates that it is mainly attributed to the high surface energy of the MoOx buffer layer, which is conducible to the improvement of the surface adhesion to the PET substrate and the Ag anode.
Keywords:  flexible white TEOLED      MoOx buffer layer      color stability      flexibility  
Received:  24 April 2013      Revised:  08 June 2013      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  78.60.Fi (Electroluminescence)  
  81.05.Fb (Organic semiconductors)  
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant No. 2009CB930600), the National Natural Science Foundation of China (Grant Nos. 61274065, 60907047, 51173081, and 61136003), the "333" and "Qing Lan" Program of Jiangsu Province, and the "Qing Lan" and "Pandeng" Project of Nanjing University of Posts and Telecommunications (Grant Nos. NY210040, NY211069, and NY 210015).
Corresponding Authors:  Chen Shu-Fen     E-mail:  iamsfchen@njupt.edu.cn

Cite this article: 

Chen Shu-Fen (陈淑芬), Guo Xu (郭旭), Wu Qiang (邬强), Zhao Xiao-Fei (赵晓飞), Shao Ming (邵茗), Huang Wei (黄维) Flexible white top-emitting organic light-emitting diode with a MoOx roughness improvement layer 2013 Chin. Phys. B 22 128506

[1] Tsai Y S, Wang S H, Juang F S, Chang S W, Chen C H, Chung M H Hsieh T E Liu M O and Liao T C 2010 J. Disp. Technol. 6 279
[2] Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L and Huang W 2010 Adv. Mater. 22 5227
[3] Mi B X, Wang X P, Gao Z Q, Guo Q and Huang W 2011 Acta Phys. Sin. 60 087808 (in Chinese)
[4] Cheng G, Qiu S, Zhao, Y, Ma Y G and Liu S Y 2003 Chin. Phys. Lett. 20 1607
[5] Ummartyotin S, Juntaro J, Sain M and Manuspiya H 2012 Ind. Crop. Prod. 35 92
[6] Xie Z Y, Hung L S and Zhu F 2003 Chem. Phys. Lett. 381 691
[7] Krasnov A N 2002 Appl. Phys. Lett. 80 3853
[8] Gustafsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N and Heeger A J 1992 Nature 357 477
[9] Lewis J, Grego S, Chalamala B, Vick E and Temple D 2004 Appl. Phys. Lett. 85 3450
[10] Li Y Q, Tan L W, Hao X T, Ong K S, Zhu F and Hung L S 2005 Appl. Phys. Lett. 86 153508
[11] Bhattacharya R, Wagner S, Tung Y J, Esler J and Hack M 2006 Appl. Phys. Lett. 88 033507
[12] Hsu C M, Tsai C L and Wu W T 2006 Appl. Phys. Lett. 88 083515
[13] Villani F, Vacca P, Nenna G, Valentino O, Burrasca G, Fasolino T, Minarini C and Sala D 2009 J. Phys. Chem. C 113 13398
[14] Wang L, Swensen J S, Polikarpov E, Matson D W, Bonham C C, Bennett W, Gaspar D J and Padmaperuma A B 2010 Org. Electron. 11 1555
[15] Ji W Y, Zhao J L, Sun Z C and Xie W F 2011 Org. Electron. 12 1137
[16] Uchida T, Wakana M, Yahata M, Dangtip S, Osotchan T, Satoh T and Sawada Y 2009 J. Disp. Technol. 5 188
[17] Low H Y and Chua S J 2002 Mater. Lett. 53 227
[18] Innocenzo J G, Wessel R A, O’ Regan M and Sellars M 2003 Proceedings of SID’03 1329
[19] Legnani C, Vilani C, Calil V L, Barud H S, Quirino W G, Achete C A, Ribeiro S J L and Cremona M 2008 Thin Solid Films 517 1016
[20] Chen S F, Shao M, Guo X, Qian Y, Shi N E, Xie L H, Yang Y and Huang W 2012 Acta Phys. Sin. 61 087801 (in Chinese)
[21] Shao M, Guo X, Chen S F, Fan Q L and Huang W 2012 Chin. Phys. B 21 108507
[22] D’Andrade B W, Thompson M E and Forrest S R 2002 Adv. Mater. 14 147
[1] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[2] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[3] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[4] Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution
Di Tang(唐迪), Hai Zhu(朱海), Wei Yuan(袁巍), Zhongyong Fan(范忠勇), Mingxia Lei(雷鸣霞). Chin. Phys. B, 2019, 28(7): 074703.
[5] Probing conformational change of T7 RNA polymerase and DNA complex by solid-state nanopores
Xin Tong(童鑫), Rui Hu(胡蕊), Xiaoqing Li(李晓晴), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(11): 118705.
[6] Improvement of electro-optic performances in white organic light emitting diodes with color stability by buffer layer and multiple dopants structure
Zhi-Qi Kou(寇志起), Yu Tang(唐宇), Li-Ping Yang(杨丽萍), Fei-Yu Yang(杨飞宇), Wen-Jun Guo(郭文军). Chin. Phys. B, 2018, 27(10): 107801.
[7] Icephobic performance on the aluminum foil-based micro-/nanostructured surface
Yu Chen(陈宇), Guicheng Liu(刘桂成), Lei Jiang(姜磊), Ji Young Kim(金志永), Feng Ye(叶锋), Joong Kee Lee(李重基), Lei Wang(王磊), Bo Wang(王波). Chin. Phys. B, 2017, 26(4): 046801.
[8] Enhancement of Förster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices
Zijun Wang(王子君), Juan Zhao(赵娟), Chang Zhou(周畅), Yige Qi(祁一歌), Junsheng Yu(于军胜). Chin. Phys. B, 2017, 26(4): 047302.
[9] Flexibility of nucleic acids: From DNA to RNA
Lei Bao(鲍磊), Xi Zhang(张曦), Lei Jin(金雷), Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2016, 25(1): 018703.
[10] Structural modeling of proteins by integrating small-angle x-ray scattering data
Zhang Yong-Hui (张泳辉), Peng Jun-Hui (彭俊辉), Zhang Zhi-Yong (张志勇). Chin. Phys. B, 2015, 24(12): 126101.
[11] Color-stable, reduced efficiency roll-off hybrid white organic light emitting diodes with ultra high brightness
Liu Bai-Quan (刘佰全), Tao Hong (陶洪), Su Yue-Ju (苏跃举), Gao Dong-Yu (高栋雨), Lan Lin-Feng (兰林锋), Zou Jian-Hua (邹建华), Peng Jun-Biao (彭俊彪). Chin. Phys. B, 2013, 22(7): 077303.
[12] The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme
Qi Jian-Xun(齐建勋) and Jiang Fan(江凡). Chin. Phys. B, 2011, 20(5): 058701.
[13] Symmetric linear potential and imperfect Brownian ratchet in molecular motor function
Li Fang-Zhen (李防震), Hu Kuang-Hu (胡匡祜), Su Wan-Fang (苏万芳), Chen Yi-Chen (陈袆辰). Chin. Phys. B, 2005, 14(9): 1745-1754.
No Suggested Reading articles found!