Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018703    DOI: 10.1088/1674-1056/25/1/018703
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

Flexibility of nucleic acids: From DNA to RNA

Lei Bao(鲍磊), Xi Zhang(张曦), Lei Jin(金雷), Zhi-Jie Tan(谭志杰)
Department of Physics and Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
Abstract  The structural flexibility of nucleic acids plays a key role in many fundamental life processes, such as gene replication and expression, DNA-protein recognition, and gene regulation. To obtain a thorough understanding of nucleic acid flexibility, extensive studies have been performed using various experimental methods and theoretical models. In this review, we will introduce the progress that has been made in understanding the flexibility of nucleic acids including DNAs and RNAs, and will emphasize the experimental findings and the effects of salt, temperature, and sequence. Finally, we will discuss the major unanswered questions in understanding the flexibility of nucleic acids.
Keywords:  DNA      RNA      flexibility      computer simulation  
Received:  01 May 2015      Revised:  09 July 2015      Accepted manuscript online: 
PACS:  87.10.Pq (Elasticity theory)  
  87.14.G- (Nucleic acids)  
  87.15.ap (Molecular dynamics simulation)  
  87.15.H- (Dynamics of biomolecules)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB933600), the National Natural Science Foundation of China (Grant Nos. 11175132, 11575128, and 11374234), and the Program for New Century Excellent Talents, China (Grant No. NCET 08-0408).
Corresponding Authors:  Zhi-Jie Tan     E-mail:  zjtan@whu.edu.cn

Cite this article: 

Lei Bao(鲍磊), Xi Zhang(张曦), Lei Jin(金雷), Zhi-Jie Tan(谭志杰) Flexibility of nucleic acids: From DNA to RNA 2016 Chin. Phys. B 25 018703

[1] Hagerman P J 1988 Annu. Rev. Biophys. Biophys. Chem. 17 265
[2] Peters J P and Maher L J 2010 Q. Rev. Biophys. 43 23
[3] Hagerman P J 1990 Annu. Rev. Biochem. 59 755
[4] Tan Z J and Chen S J 2011 Met. Ions Life Sci. 9 101
[5] Lebrun A, Shakked Z and Lavery R 1997 Proc. Natl. Acad. Sci. USA 94 2993
[6] Mazur A K and Maaloum M 2014 Phys. Rev. Lett. 112 068104
[7] Abels J A, Moreno-Herrero F, Van der Heijden T, Dekker C and Dekker N H 2005 Biophys. J. 88 2737
[8] Kang J, Jung J and Kim S K 2014 Biophys. Chem. 195 49
[9] Yuan C, Chen H, Lou X W and Archer L A 2008 Phys. Rev. Lett. 100 018102
[10] Mathew-Fenn R S, Das R and Harbury P A 2008 Science 322 446
[11] Mastroianni A J, Sivak D A, Geissler P L and Alivisatos A P 2009 Biophys. J. 97 1408
[12] Wang X L, Zhang X H, Cao M, Zheng H Z, Xiao B, Wang Y and Li M 2009 J. Phys. Chem. B 113 2328
[13] Li W, Wang P Y, Yan J and Li M 2012 Phys. Rev. Lett. 109 218102
[14] Lipfert J, Skinner G M, Keegstra J M, Hensgens T, Jager T, Dulin D, Köbera M, Yu Z B, Donkers S P, Chou F C, Das R and Dekker N H 2014 Proc. Natl. Acad. Sci. USA 111 15408
[15] Herrero-Galán E, Fuentes-Perez M E, Carrasco C, Valpuesta J M, Carrascosa J L, Moreno-Herrero F and Arias-Gonzalez J R 2013 J. Am. Chem. Soc. 135 122
[16] Lipfert J, Kerssemakers J W, Jager T and Dekker N H 2010 Nat. Methods 7 977
[17] Marko J F and Siggia E D 1995 Macromolecules 28 8759
[18] Toan N M and Thirumalai D 2012 J. Chem. Phys. 136 235103
[19] Song T J and Liang H J 2012 J. Am. Chem. Soc. 134 10803
[20] Zhang Y J, Zhang J and Wang W 2011 J. Am. Chem. Soc. 133 6882
[21] Xiao S Y, Zhu H, Wang L and Liang H J 2014 Soft Matter 10 1045
[22] Xiao S Y and Liang H J 2012 J. Chem. Phys. 136 205102
[23] Zhao Y J, Huang Y Y, Gong Z, Wang Y J, Man J F and Xiao Y 2012 Sci. Rep. 2 734
[24] Qi W P, Lei X L and Fang H P 2010 ChemPhysChem 11 2146
[25] Tan Z J and Chen S J 2008 Biophys. J. 94 3137
[26] Hou X M, Zhang X H, Wei K J, Ji C, Dou S X, Wang W C, Li M and Wang P Y 2009 Nucleic Acids Res. 37 1400
[27] Wenner J R, Williams M C, Rouzina I and Bloomfield V A 2002 Biophys. J. 82 3160
[28] Baumann C G, Smith S B, Bloomfield V A and Bustamante C 1997 Proc. Natl. Acad. Sci. USA 94 6185
[29] Gray H B and Hearst J E 1968 J. Mol. Biol. 35 111
[30] Forties R A, Bundschuh R and Poirier M G 2009 Nucleic Acids Res. 37 4580
[31] Geggier S, Kotlyar A and Vologodskii A 2011 Nucleic Acids Res. 39 1419
[32] Hannon G J 2002 Nature 418 244
[33] Saenger W 1984 Principles of Nucleic Acid Structure (New York: Springer-Verlag)
[34] Diebold S S, Kaisho T, Hemmi H, Akira S and e Sousa C R 2004 Science 303 1529
[35] Sung P and Robberson D L 1995 Cell 82 453
[36] Bosco A, Camunas-Soler J and Ritort F 2013 Nucleic Acids Res. 42 2064
[37] Landy J, McIntosh D B and Saleh O A 2012 Phys. Rev. Lett. 109 048301
[38] McIntosh D B and Saleh O A 2011 Macromolecules 44 2328
[39] Seol Y, Skinner G M, Visscher K, Buhot A and Halperin A 2007 Phys. Rev. Lett. 98 158103
[40] Zhang Y, Zhou H J and Ou-Yang Z C 2001 Biophys. J. 81 1133
[41] Chen H, Meisburger S P, Pabit S A, Sutton J L, Webb W W and Pollack L 2012 Proc. Natl. Acad. Sci. USA 109 799
[42] Meisburger S P, Sutton J L, Chen H, Pabit S A, Kirmizialtin S, Elber R and Pollack L 2013 Biopolymers 99 1032
[43] Sim A Y, Lipfert J, Herschlag D and Doniach S 2012 Phys. Rev. E 86 021901
[44] Ke C, Humeniuk M, Hanna S and Marszalek P E 2007 Phys. Rev. Lett. 99 018302
[45] Toan N M and Thirumalai D 2012 J. Chem. Phys. 136 235103
[46] Sing C E and Alexander-Katz A 2011 Macromolecules 44 6962
[47] Wang F H, Wu Y Y and Tan Z J 2013 Biopolymers 99 370
[48] Dessinges M N, Maier B, Zhang Y, Peliti M, Bensimon D and Croquette V 2002 Phys. Rev. Lett. 89 248102
[49] Smith S B, Cui Y and Bustamante C 1996 Science 271 795
[50] Mills J B, Vacano E and Hagerman P J 1999 J. Mol. Biol. 285 245
[51] Seol Y, Skinner G M and Visscher K 2004 Phys. Rev. Lett. 93 118102
[52] Tinland B, Pluen A, Sturm J and Weill G 1997 Macromolecules 30 5763
[53] Tan Z J and Chen S J 2008 Biophys. J. 95 738
[54] Cocco S, Yan J, Léger J F, Chatenay D and Marko J F 2004 Phys. Rev. E 70 011910
[55] Sim A Y, Lipfert J, Herschlag D and Doniach S 2012 Phys. Rev. E 86 021901
[56] Riemer S C and Bloomfield V A 1978 Biopolymers 17 785
[57] T J Richmond, J T Finch, B Rushton, D Rhodes and Klug A 1984 Nature 311 532
[58] Bryant Z, Stone M D, Gore J, Smith S B, Cozzarelli N R and Bustamante C 2003 Nature 424 338
[59] Horowitz D S and Wang J C 1984 J. Mol. Biol. 173 75
[60] Shore D and Baldwin R L 1983 J. Mol. Biol. 170 983
[61] Vologodskii A V and Marko J F 1997 Biophys. J. 73 123
[62] Strick T R, Bensimon D and Croquette V 1999 Genetica 106 57
[63] Tan Z J and Chen S J 2006 Biophys. J. 90 1175
[64] Tan Z J and Chen S J 2007 Biophys. J. 92 3615
[65] Peters J P, Mogil L S, McCauley M J, Williams M C and Maher L J 2014 Biophys. J. 107 448
[66] Maret G and Weill G 1983 Biopolymers 22 2727
[67] Podesta A, Indrieri M, Brogioli D, Manning G S, Milani P, Guerra R, Finzi L and Dunlap D 2005 Biophys. J. 89 2558
[68] Sobel E S and Harpst J A 1991 Biopolymers 31 1559
[69] Borochov N, Eisenberg H and Kam Z 1981 Biopolymers 20 231
[70] Tan Z J and Chen S J 2005 J. Chem. Phys. 122 044903
[71] Tan Z J and Chen S J 2009 Methods Enzymol. 469 465
[72] Manning G S 2015 Biopolymers 103 223
[73] Mantelli S, Muller P, Harlepp S and Maaloum M 2011 Soft Matter 7 3412
[74] Wang M D, Yin H, Landick R, Gelles J and Block S M 1997 Biophys. J. 72 1335
[75] Anderson P and Bauer W 1978 Biochemistry 17 594
[76] Lang D, Steely H T, Kao C Y and Ktistakis N T 1987 Biochim. Biophys. Acta. 910 271
[77] Odijk T 1977 J. Polym. Sci. Polym. Phys. Ed. 15 477
[78] Skolnick J and Fixman M 1977 Macromolecules 10 944
[79] Manning G S 2006 Biophys. J. 91 3607
[80] Savelyev A, Materese C K and Papoian G A 2011 J. Am. Chem. Soc. 133 19290
[81] Savelyev A 2012 Phys. Chem. Chem. Phys. 14 2250
[82] Tan Z J and Chen S J 2006 Nucleic Acids Res. 34 6629
[83] Tan Z J and Chen S J 2012 Biophys. J. 103 827
[84] Rau D C and Parsegian V A 1992 Biophys. J. 61 246
[85] Schellman J A 1974 Biopolymers 13 217
[86] Chen H and Yan J 2008 Phys. Rev. E 77 041907
[87] Chen H, Liu Y, Zhou Z, Hu L, Ou-Yang Z C and Yan J 2009 Phys. Rev. E 79 041926
[88] Wu Y Y, Bao L, Zhang X and Tan Z J 2015 J. Chem. Phys. 142 125103
[89] Kochoyan M, Leroy J L and Guéron M 1987 J. Mol. Biol. 196 599
[90] Coman D and Russu I M 2005 Biophys. J. 89 3285
[91] Driessen R P, Sitters G, Laurens N, Moolenaar G F, Wuite G J, Goosen N and Dame R T 2014 Biochemistry 53 6430
[92] Porschke D 1991 Biophys. Chem. 40 169
[93] Olson W K, Marky N L, Jernigan R L and Zhurkin V B 1993 J. Mol. Biol. 232 530
[94] Olson W K, Gorin A A, Lu X J, Hock L M and Zhurkin V B 1998 Proc. Natl. Acad. Sci. USA 95 11163
[95] Scipioni A, Anselmi C, Zuccheri G, Samori B and De Santis P 2002 Biophys. J. 83 2408
[96] Ortiz V and de Pablo J J 2011 Phys. Rev. Lett. 106 238107
[97] Rivetti C, Guthold M and Bustamante C 1996 J. Mol. Biol. 264 919
[98] Le Cam E, Culard F, Larquet E, Delain E and Cognet J A 1999 J. Mol. Biol. 285 1011
[99] Geggier S and Vologodskii A 2010 Proc. Natl. Acad. Sci. USA 107 15421
[100] MacDonald D, Herbert K, Zhang X, Polgruto T and Lu P 2001 J. Mol. Biol. 306 1081
[101] Brukner I, Dlakic M, Savic A, Susic S, Pongor S and Suck D 1993 Nucleic Acids Res. 21 1025
[102] Lavery R, Zakrzewska K, Beveridge D, Bishop T C, Case D A, Cheatham III T, Dixit S, Jayaram B, Lankas F, Laughton C, Maddocks J H, Michon A, Osman R, Orozco M, Perez A, Singh T, Spackova N and Sponer J 2010 Nucleic Acids Res. 38 299
[103] Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D and Caron F 1996 Science 271 792
[104] Bustamante C, Bryant Z and Smith S B 2003 Nature 421 423
[105] Fu H, Chen H, Zhang X, Qu Y, Marko J F and Yan J 2011 Nucleic Acids Res. 39 3473
[106] Zhang X, Chen H, Fu H, Doyle P S and Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103
[107] Zhang X, Chen H, Le S, Rouzina I, Doyle P S and Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865
[108] Zhang X, Qu Y, Chen H, Rouzina I, Zhang S, Doyle P S and Yan J 2014 J. Am. Chem. Soc. 136 16073
[109] Li J, Wijeratne S S, Qiu X and Kiang C H 2015 Nanomaterials 5 246
[110] Rouzina I and Bloomfield V A 2001 Biophys. J. 80 882
[111] Rouzina I and Bloomfield V A 2001 Biophys. J. 80 894
[112] Yan J and Marko J F 2004 Phys. Rev. Lett. 93 108108
[113] Cloutier T E and Widom J 2004 Mol. Cell. 14 355
[114] Vafabakhsh R and Ha T 2012 Science 337 1097
[115] Wiggins P A, Van Der Heijden T, Moreno-Herrero F, Spakowitz A, Phillips R, Widom J, Dekker C and Nelson P C 2006 Nat. Nanotech. 1 137
[116] Mazur A K and Maaloum M 2014 Phys. Rev. Lett. 112 068104
[117] Mazur A K and Maaloum M 2014 Nucleic Acids Res. 42 14006
[118] Mathew-Fenn R S, Das R and Harbury P A 2008 Science 322 446
[119] Yan J, Kawamura R and Marko J F 2005 Phys. Rev. E 71 061905
[120] Padinhateeri R and Menon G I 2013 Biophys. J. 104 463
[121] Timmons L and Fire A 1998 Nature 395 854
[122] Guo P 2010 Nat. Nanotech. 5 833
[123] Bumcrot D, Manoharan M, Koteliansky V and Sah D W 2006 Nat.Chem. Biol. 2 711
[124] Metzler D 2003 Biochemistry: the Chemical Reactions of Living Cells (2nd edn.) (Amsterdam: Elsevier)
[125] Gast F U and Hagerman P J 1991 Biochemistry 30 4268
[126] Kebbekus P, Draper D E and Hagerman P 1995 Biochemistry 34 4354
[127] Shi Y Z, Wu Y Y, Wang F H and Tan Z J 2014 Chin. Phys. B 23 078701
[128] Tan Z J, Zhang W B, Shi Y Z, Wang F H 2015 Adv. Expt. Med. Biol. 827 143
[129] Frank J and Agrawal R K 2000 Nature 406 318
[130] Mandal M and Breaker R R 2004 Nat. Rev. Mol. Cell Biol. 5 451
[131] Fulle S and Gohlke H 2008 Biophys. J. 94 4202
[132] Murchie A I, Davis B, Isel C, Afshar M, Drysdale M J, Bower J, Potter A J, Starkey I D, Swarbrick T M, Mirza S, Prescott C D, Vaglio P, Aboul-ela F and Karn J 2004 J. Mol. Biol. 336 625
[133] Roh J H, Tyagi M, Briber R M, Woodson S A and Sokolov A P 2011 J. Am. Chem. Soc. 133 16406
[134] Zacharias M and Hagerman P J 1995 Proc. Natl. Acad. Sci. USA 92 6052
[135] De Almeida Ribeiro E, Beich-Frandsen M, Konarev P V, ShangWF, Večerek B, Kontaxis G, Hänmerle H, Peterlik H, Svergun D I, Bläsi U and Djinović-Carugo K 2012 Nucleic Acids Res. 40 8072
[136] Fulle S and Gohlke H 2010 J. Mol. Recognit. 23 220
[137] Zacharias M and Hagerman P J 1995 J. Mol. Biol. 247 486
[138] Zacharias M and Hagerman P J 1996 J. Mol. Biol. 257 276
[139] Salmon L, Bascom G, Andricioaei I and Al-Hashimi H M 2013 J. Am. Chem. Soc. 135 5457
[140] Al-Hashimi H M, Gosser Y, Gorin A, Hu W, Majumdar A and Patel D J 2002 J. Mol. Biol. 315 95
[141] Zhang Q, Stelzer A C, Fisher C K and Al-Hashimi H M 2007 Nature 450 1263
[142] Caliskan G, Hyeon C, Perez-Salas U, Briber R M, Woodson S A and Thirumalai D 2005 Phys. Rev. Lett. 95 268303
[143] Fulle S and Gohlke H 2009 Methods 49 181
[144] Mustoe A M, Brooks C L and Al-Hashimi H M 2014 Annu. Rev. Biochem. 83 441
[145] Shi Y Z, Wang F H, Wu Y Y and Tan Z J 2014 J. Chem. Phys. 141 105102
[146] Pfleger C, Rathi P C, Klein D L, Radestock S and Gohlke H 2013 J. Chem. Inf. Model. 53 1007
[147] Wiggins P A, Phillips R and Nelson P C 2005 Phys. Rev. E 71 021909
[148] Noy A and Golestanian R 2012 Phys. Rev. Lett. 109 228101
[149] Xu X, Thio B J R and Cao J 2014 J. Phys. Chem. Lett. 5 2868
[150] Widom J and Baldwin R L 1980 J. Mol. Biol. 144 431
[151] Bloomfield V A 1997 Biopolymers 44 269
[152] Tolokh I S, Pabit S A, Katz A M, Chen Y, Drozdetski A, Baker N, Pollack L and Onufriev A V 2014 Nucleic Acids Res. 42 10823
[153] Wu Y Y, Zhang Z L, Zhang J S, Zhu X L, Tan Z J 2015 Nucleic Acids Res. 43 6156
[154] Lipfert J, Doniach S, Das R and Herschlag D 2014 Annu. Rev. Biochem. 83 813
[155] Draper D E, Grilley D and Soto A M 2005 Annu. Rev. Biophys. Biomol. Struct. 34 221
[156] Woodson S A 2005 Curr. Opin. Chem. Biol. 9 104
[157] Tan Z J and Chen S J 2010 Biophys. J. 99 1565
[158] Tan Z J and Chen S J 2011 Biophys. J. 101 176
[159] Serganov A and Nudler E 2013 Cell 152 17
[160] Cech T R and Steitz J A 2014 Cell 157 77
[161] Chen J W and Zhang W B 2012 J. Chem. Phys. 137 225102
[162] Gong S, Wang Y J and Zhang W B 2015 J. Chem. Phys. 142 015103
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Force-constant-decayed anisotropic network model: An improved method for predicting RNA flexibility
Wei-Bu Wang(王韦卜), Xing-Yuan Li(李兴元), and Ji-Guo Su(苏计国). Chin. Phys. B, 2022, 31(6): 068704.
[6] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[7] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[8] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[9] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[10] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[11] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[12] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[13] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Enhancements of the Gaussian network model in describing nucleotide residue fluctuations for RNA
Wen-Jing Wang(王文静) and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(5): 058701.
No Suggested Reading articles found!