Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 126101    DOI: 10.1088/1674-1056/24/12/126101
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

Structural modeling of proteins by integrating small-angle x-ray scattering data

Zhang Yong-Hui (张泳辉), Peng Jun-Hui (彭俊辉), Zhang Zhi-Yong (张志勇)
Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
Abstract  

Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an “integrative structural biology” approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high-and low-resolution experimental data using computer simulations. Small-angle x-ray scattering (SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin.

Keywords:  protein structure      flexibility      computer simulations      small-angle x-ray scattering      integrative modeling  
Received:  29 April 2015      Revised:  14 July 2015      Accepted manuscript online: 
PACS:  61.05.cf (X-ray scattering (including small-angle scattering))  
  87.14.E- (Proteins)  
  87.15.ap (Molecular dynamics simulation)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB910203 and 2011CB911104), the National Natural Science Foundation of China (Grant No. 31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB08030102), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113402120013).

Corresponding Authors:  Zhang Zhi-Yong     E-mail:  zzyzhang@ustc.edu.cn

Cite this article: 

Zhang Yong-Hui (张泳辉), Peng Jun-Hui (彭俊辉), Zhang Zhi-Yong (张志勇) Structural modeling of proteins by integrating small-angle x-ray scattering data 2015 Chin. Phys. B 24 126101

[1] Zheng W 2014 Chin. Phys. B 23
[2] Li L, Dong S and Dong Y 2008 Chin. Phys. B 17 4574
[3] Graewert M A and Svergun D I 2013 Curr. Opin. Struct. Biol. 23 748
[4] Ward A B, Sali A and Wilson I A 2013 Science 339 913
[5] Svergun D I 1992 J. Appl. Crystallogr. 25 495
[6] Svergun D I 1999 Biophys. J. 76 2879
[7] Svergun D I, Petoukhov M V and Koch M H 2001 Biophys. J. 80 2946
[8] Bernado P, Mylonas E, Petoukhov M V, Blackledge M and Svergun D I 2007 J. Am. Chem. Soc. 129 5656
[9] Svergun D, Barberato C and Koch M H J 1995 J. Appl. Crystallogr. 28 768
[10] Zuo X, Cui G, Merz K M, Jr., Zhang L, Lewis F D and Tiede D M 2006 Proc. Natl. Acad. Sci. USA 103 3534
[11] Tjioe E and Heller W T 2007 J. Appl. Crystallogr. 40 782
[12] Bardhan J, Park S and Makowski L 2009 J. Appl. Crystallogr. 42 932
[13] Yang S, Park S, Makowski L and Roux B 2009 Biophys. J. 96 4449
[14] Grishaev A, Guo L, Irving T and Bax A 2010 J. Am. Chem. Soc. 132 15484
[15] Schneidman-Duhovny D, Hammel M and Sali A 2010 Nucleic Acids Res. 38 W540
[16] Stovgaard K, Andreetta C, Ferkinghoff-Borg J and Hamelryck T 2010 BMC Bioinformatics 11 429
[17] Poitevin F, Orland H, Doniach S, Koehl P and Delarue M 2011 Nucleic Acids Res. 39 W184
[18] Liu H, Morris R J, Hexemer A, Grandison S and Zwart P H 2012 Acta Crystallogr. A 68 278
[19] Schneidman-Duhovny D, Kim S J and Sali A 2012 BMC Struct. Biol. 12
[20] Petoukhov M V and Svergun D I 2005 Biophys. J. 89 1237
[21] Konarev P V, Petoukhov M V, Volkov V V and Svergun D I 2006 J. Appl. Crystallogr. 39 277
[22] Schwieters C D, Kuszewski J J, Tjandra N and Clore G M 2003 J. Magn. Reson. 160 65
[23] Pons C, D'Abramo M, Svergun D I, Orozco M, Bernado P and Fernandez-Recio J 2010 J. Mol. Biol. 403 217
[24] Gabb H A, Jackson R M and Sternberg M J 1997 J. Mol. Biol. 272 106
[25] Cheng T M, Blundell T L and Fernandez-Recio J 2007 Proteins 68 503
[26] Schneidman-Duhovny D, Hammel M and Sali A 2011 J. Struct. Biol. 173 461
[27] Duhovny D, Nussinov R and Wolfson H J 2002 Lect. Notes Comput. Sci. 2452 185
[28] Andrusier N, Nussinov R and Wolfson H J 2007 Proteins 69 139
[29] Zheng W and Tekpinar M 2011 Biophys. J. 101 2981
[30] Gorba C, Miyashita O and Tama F 2008 Biophys. J. 94 1589
[31] Bjorling A, Niebling S, Marcellini M, van der Spoel D and Westenhoff S 2015 J. Chem. Theory Comput. 11 780
[32] Bernadó P and Blackledge M 2010 Nature 468 1046
[33] Pelikan M, Hura G L and Hammel M 2009 Gen. Physiol. Biophys. 28 174
[34] Wen B, Peng J, Zuo X, Gong Q and Zhang Z 2014 Biophys. J. 107 956
[35] Yang S, Blachowicz L, Makowski L and Roux B 2010 Proc. Natl. Acad. Sci. USA 107 15757
[36] Hartigan J A and Wong M A 1979 Appl. Stat. 28 100
[37] Rozycki B, Kim Y C and Hummer G 2011 Structure 19 109
[38] Heyer L J, Kruglyak S and Yooseph S 1999 Genome. Res. 9 1106
[39] Zuiderweg E R 2002 Biochemistry 41 1
[40] Fushman D, Varadan R, Assfalg M and Walker O 2004 Progress in Nuclear Magnetic Resonance Spectroscopy 44 189
[41] Russel D, Lasker K, Webb B, Velazquez-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B and Sali A 2012 PLoS Biol. 10 e1001244
[42] Baumann C A, Ribon V, Kanzaki M, Thurmond D C, Mora S, Shigematsu S, Bickel P E, Pessin J E and Saltiel A R 2000 Nature 407 202
[43] Borgon R A, Vonrhein C, Bricogne G, Bois P R J and Izard T 2004 Structure 12 1189
[44] Mandai K, Nakanishi H, Satoh A, Takahashi K, Satoh K, Nishioka H, Mizoguchi A and Takai Y 1999 J. Cell Biol. 144 1001
[45] Whitford P C, Noel J K, Gosavi S, Schug A, Sanbonmatsu K Y and Onuchic J N 2009 Proteins 75 430
[46] Noel J K, Whitford P C, Sanbonmatsu K Y and Onuchic J N 2010 Nucleic Acids Res. 38 W657
[47] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theor. Comput. 4 435
[48] Noel J K, Whitford P C and Onuchic J N 2012 J. Phys. Chem. B 116 8692
[49] Kouza M, Li M S, O'Brien E P Jr, Hu C K and Thirumalai D 2006 J. Phys. Chem. A 110 671
[50] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[1] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[2] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[3] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[4] Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution
Di Tang(唐迪), Hai Zhu(朱海), Wei Yuan(袁巍), Zhongyong Fan(范忠勇), Mingxia Lei(雷鸣霞). Chin. Phys. B, 2019, 28(7): 074703.
[5] First-principles studies on carbon diffusion in tungsten
Chi Song(宋驰), Xiang-Shan Kong(孔祥山), C S Liu(刘长松). Chin. Phys. B, 2019, 28(11): 116106.
[6] Probing conformational change of T7 RNA polymerase and DNA complex by solid-state nanopores
Xin Tong(童鑫), Rui Hu(胡蕊), Xiaoqing Li(李晓晴), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(11): 118705.
[7] Icephobic performance on the aluminum foil-based micro-/nanostructured surface
Yu Chen(陈宇), Guicheng Liu(刘桂成), Lei Jiang(姜磊), Ji Young Kim(金志永), Feng Ye(叶锋), Joong Kee Lee(李重基), Lei Wang(王磊), Bo Wang(王波). Chin. Phys. B, 2017, 26(4): 046801.
[8] In-situ study of precipitates in Al-Zn-Mg-Cu alloys using anomalous small-angle x-ray scattering
Chun-Ming Yang(杨春明), Feng-Gang Bian(边风刚), Bai-Qing Xiong(熊柏青), Dong-Mei Liu(刘冬梅), Yi-Wen Li(李怡雯), Wen-Qiang Hua(滑文强), Jie Wang(王劼). Chin. Phys. B, 2016, 25(6): 066101.
[9] Flexibility of nucleic acids: From DNA to RNA
Lei Bao(鲍磊), Xi Zhang(张曦), Lei Jin(金雷), Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2016, 25(1): 018703.
[10] Small-angle X-ray analysis of the effect of grain size on the thermal damage of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7 tetrazocine-based plastic-bounded expolsives
Yan Guan-Yun (闫冠云), Tian Qiang (田强), Liu Jia-Hui (刘佳辉), Chen Bo (陈波), Sun Guang-Ai (孙光爱), Huang Ming (黄明), Li Xiu-Hong (李秀宏). Chin. Phys. B, 2014, 23(7): 076101.
[11] Proteins:From sequence to structure
Zheng Wei-Mou (郑伟谋). Chin. Phys. B, 2014, 23(7): 078705.
[12] Flexible white top-emitting organic light-emitting diode with a MoOx roughness improvement layer
Chen Shu-Fen (陈淑芬), Guo Xu (郭旭), Wu Qiang (邬强), Zhao Xiao-Fei (赵晓飞), Shao Ming (邵茗), Huang Wei (黄维). Chin. Phys. B, 2013, 22(12): 128506.
[13] The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme
Qi Jian-Xun(齐建勋) and Jiang Fan(江凡). Chin. Phys. B, 2011, 20(5): 058701.
[14] Investigation of the topological shape of bovine serum albumin in solution by small-angle x-ray scattering at Beijing synchrotron radiation facility
Dong Shu-Qiang (董淑强), Li Li-Qin (李丽琴), Liu Peng (刘鹏), Dong Yu-Hui (董宇辉), Chen Xi-Meng(陈熙萌). Chin. Phys. B, 2008, 17(12): 4574-4579.
[15] Symmetric linear potential and imperfect Brownian ratchet in molecular motor function
Li Fang-Zhen (李防震), Hu Kuang-Hu (胡匡祜), Su Wan-Fang (苏万芳), Chen Yi-Chen (陈袆辰). Chin. Phys. B, 2005, 14(9): 1745-1754.
No Suggested Reading articles found!