Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 128701    DOI: 10.1088/1674-1056/22/12/128701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Symmetrical adhesion of two cylindrical colloids to a tubular membrane

Niu Yu-Quan (牛余全), Wei Wei (魏巍), Zheng Bin (郑斌), Zhang Cai-Xia (张彩霞), Meng Qing-Tian (孟庆田)
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  With the full treatment of the Helfrich model we theoretically study the symmetrical adhesion of two cylindrical colloids to a tubular membrane. The adhesion of the rigid cylinders with different radius from the membrane tube surface can produce both shallow wrapping with relatively small wrapping angle and deep wrapping with big wrapping angle. These significant structural behaviors can be obtained by analyzing the system energy. A second order adhesion transition from the desorbed to weakly adhered states is found, and a first order phase transition where the cylindrical colloids undergo an abrupt transition from weakly adhered to strongly adhered states can be obtained as well.
Keywords:  Helfrich model      phase transition      free energy      tubular membrane  
Received:  18 April 2013      Revised:  09 July 2013      Accepted manuscript online: 
PACS:  87.15.ad (Analytical theories)  
  87.15.kt (Protein-membrane interactions)  
  68.35.Np (Adhesion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074151) and the National Key Basic Research and Development Program of China (Grant No. 2011CB808100).
Corresponding Authors:  Meng Qing-Tian     E-mail:  qtmeng@sdnu.edu.cn

Cite this article: 

Niu Yu-Quan (牛余全), Wei Wei (魏巍), Zheng Bin (郑斌), Zhang Cai-Xia (张彩霞), Meng Qing-Tian (孟庆田) Symmetrical adhesion of two cylindrical colloids to a tubular membrane 2013 Chin. Phys. B 22 128701

[1] Lodish H, Berk A, Zipursky S L, Matsudaira P, Baltimore D and Darnell J 2000 Molecular Cell Biology (New York: W. H. Freeman and Company)
[2] Pietiainen V, Marjomaki V, Upla P, Pelkmans L, Helenius A and Hyypia T 2004 Mol. Biol. Cell 15 4911
[3] Sieczkarski S B and Whittaker G R 2002 J. Gen. Virol. 83 1535
[4] Helfrich W, Servuss R M and Undulations 1984 Nuovo Cimento D 3 137
[5] Helfrich W 1973 Z. Naturforsch C 28 693
[6] Ouyang Z C and Helfrich W 1987 Phys. Rev. Lett. 59 2486
[7] Ouyang Z C and Helfrich W 1989 Phys. Rev. A 39 5280
[8] Tu Z C and Ouyang Z C 2003 Phys. Rev. E 68 061915
[9] Tu Z C 2013 Chin. Phys. B 22 028701
[10] Peng Y G and Zheng Y J 2011 Acta Phys. Sin. 60 088701 (in Chinese)
[11] Smith A S, Sackmann E and Seifert U 2004 Phys. Rev. Lett. 92 208101
[12] Tsafrir I, Sagi D, Arzi T, Frette V, Kandel D and Stavans J 2001 Phys. Rev. Lett. 86 1138
[13] Benoit J and Saxena A 2007 Phys. Rev. E 76 041912
[14] Deserno M 2004 Phys. Rev. E 69 031903
[15] Müller M M and Deserno M 2007 Phys. Rev. E 76 011921
[16] Deserno M and Gelbart W M 2002 J. Phys. Chem. B 106 5543
[17] Chen Jeff Z Y 2010 Phys. Rev. E 82 060801
[18] Chen Jeff Z Y 2007 Phys. Rev. Lett. 98 088302
[19] Chen Jeff Z Y, Liu Y and Liang H J 2009 Phys. Rev. Lett. 102 168103
[20] Cao S Q, Wei G H and Chen Jeff Z Y 2011 Phys. Rev. E 84 050901
[21] Mkrtchyan S, Ing C and Chen Jeff Z Y 2010 Phys. Rev. E 81 011904
[22] Chen Jeff Z Y and Mkrtchyan S 2010 Phys. Rev. E 81 041906
[23] Derenyi I, Julicher F and Prost J 2002 Phys. Rev. Lett. 88 238101
[24] Roux A, Cappello G, Cartaud J, Prost J, Goud B and Bassereau P 2002 Proc. Natl. Acad. Sci. USA 99 5394
[25] Tsafrir I, Caspi Y, Guedeau-Boudeville M A, Arzi T and Stavans J 2003 Phys. Rev. Lett. 91 138102
[26] Das J and Jack M 1976 Proc. Natl. Acad. Sci. USA 73 1489
[27] Paczuski M and Kardar M 1988 Phys. Rev. Lett. 60 2638
[28] Koibuchi H and Kuwahata T 2005 Phys. Rev. E 72 026124
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
No Suggested Reading articles found!