CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhancement of Förster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices |
Zijun Wang(王子君)1, Juan Zhao(赵娟)2, Chang Zhou(周畅)1, Yige Qi(祁一歌)1, Junsheng Yu(于军胜)1 |
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China(UESTC), Chengdu 610054, China; 2 School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract Fluorescence/phosphorescence hybrid white organic light-emitting devices (WOLEDs) based on double emitting layers (EMLs) with high color stability are fabricated. The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence (TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone (DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2'] iridium (acetylacetonate) ((tbt)2Ir(acac)). Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline (Bphen) and 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene (TPBi) are selected as the electron transporting layer (ETL), and the thickness of yellow EML is adjusted to optimize device performance. The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage (CIE) coordinates variation of (0.017, 0.009) at a luminance ranging from 52 cd/m2 to 6998 cd/m2. The TPBi-based device yields a high efficiency with a maximum external quantum efficiency (EQE), current efficiency, and power efficiency of 10%, 21.1 cd/A, and 21.3 lm/W, respectively. The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer, so that Förster energy transfer (FRET) from DMAC-DPS to (tbt)2Ir(acac) is dominant, which is beneficial to keep the color stable. The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.
|
Received: 16 December 2016
Revised: 29 December 2016
Accepted manuscript online:
|
PACS:
|
73.21.Ac
|
(Multilayers)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
73.61.Ph
|
(Polymers; organic compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675041 and 61605253), the Foundation for Innovation Research Groups of the National Natural Science Foundation of China (Grant No. 61421002), and the Science & Technology Department Program of Sichuan Province, China (Grant No. 2016HH0027). |
Corresponding Authors:
Juan Zhao, Junsheng Yu
E-mail: zhaoj95@mail.sysu.edu.cn;jsyu@uestc.edu.cn
|
Cite this article:
Zijun Wang(王子君), Juan Zhao(赵娟), Chang Zhou(周畅), Yige Qi(祁一歌), Junsheng Yu(于军胜) Enhancement of Förster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices 2017 Chin. Phys. B 26 047302
|
[1] |
Sun Y, Giebink N C, Kanno H, Ma B, Thompson M E and Forrest S R 2006 Nature 440 908
|
[2] |
Kido J, Kimura M and Nagai K 1995 Science 267 1332
|
[3] |
Jou J H, Hsieh C Y, Tseng J R, Peng S H, Jou Y C, Hong J H, Shen S M, Tang M C, Chen P C and Lin C H 2013 Adv. Funct. Mater. 23 2750
|
[4] |
He Z S, Yu H M, Peng H and Hou X Y 2015 Chin. Phys. B 24 097201
|
[5] |
Liu B Q, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H and Peng J B 2013 Chin. Phys. B 22 077303
|
[6] |
Reineke S, Lindner F, Schwartz G, Seidler N, Walzer. K, Lussem B and Leo K 2009 Nature 459 234
|
[7] |
Wang C, Li X L, Pan Y Y, Zhang S T, Yao L, Bai Q, Li W J, Liu P, Yang B, Su S J and Ma Y G 2016 ACS Appl. Mater. Interfaces 8 3041
|
[8] |
Liu X K, Chen Z, Zheng C J, Chen M, Liu W and Zhang X H 2015 Adv. Mater. 27 2025
|
[9] |
Zhang Y F, Lee J S and Forrest S R 2014 Nat. Commun. 5 5008
|
[10] |
Zhao F C, Zhang Z Q, Liu Y P, Dai Y, Chen J S and Ma D G 2012 Org. Electron. 13 1049
|
[11] |
Zheng C J, Wang J, Ye J, Lo M F, Liu K Q and Fung M K 2013 Adv. Mater. 25 2205.
|
[12] |
Sun N, Wang Q, Zhao Y B, Chen Y H, Yang D Z, Zhao F C, Chen J S and Ma D G 2014 Adv. Mater. 26 1617
|
[13] |
Ye J, Zheng C, Ou X M, Zhang X H, Fung M K and Lee C S 2012 Adv. Mater. 24 3410
|
[14] |
Zheng C J, Wang J, Ye J, Lo M F, Liu K Q, Fung M K, Zhang X H and Lee C S 2013 Adv. Mater. 25 2205
|
[15] |
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y and Adachi C 2009 Adv. Mater. 21 4802
|
[16] |
Uoyama H, Goushi K, Shizu K, Nomura H and Adachi C 2012 Nature 492 234
|
[17] |
Nishide J, Nakanotani H, Hiraga Y and Adachi C 2014 Appl. Phys. Lett. 104 233304
|
[18] |
Kim B S and Lee J Y 2015 Org. Electron. 21 100
|
[19] |
Higuchi T, Nakanotani H and Adachi C 2015 Adv. Mater. 27 2019
|
[20] |
Sun J W, Kim K W, Moon C K, Lee J H and Kim J J 2016 ACS Appl. Mater. Interfaces 8 9806
|
[21] |
Wang Q, Oswald I W H, Perez M R, Jia H, Shahub A A, Qiao Q, Gnade B E and Omary M A 2014 Adv. Funct. Mater. 24 4746
|
[22] |
Yin Y M, Yu J, Cao H T, Zhang L T, Sun H Z and Xie W F 2014 Sci. Rep. 4 6754
|
[23] |
Xue K W, Han G G, Duan Y, Chen P, Yang Y Q, Yang D, Duan Y H, Wang X and Zhao Y 2015 Org. Electron. 18 84
|
[24] |
Xue K W, Sheng R, Chen B Y, Duan Y, Chen P and Yang Y Q, Wang X, Duan Y H and Zhao Y 2015 RSC Adv. 5 39097
|
[25] |
Yang H 2013 J. Lumin. 142 231
|
[26] |
Zhao Y, Chen J and Ma D 2013 ACS Appl. Mater. Interfaces 5 965
|
[27] |
Zhang Q S, Li B, Huang S P, Nomura H, Tanaka H and Adachi C 2014 Nat. Photon. 8 326
|
[28] |
Zhang Q S, Tsang D, Kuwabara H, Hatae Y, Li B, Takahashi T, Lee S Y, Yasuda T and Adachi C 2015 Adv. Mater. 27 2096
|
[29] |
Zhang D D, Cai M G, Zhang Y G, Zhang D Q and Duan L 2015 ACS Appl. Mater. Interfaces 7 28693
|
[30] |
Song W and Lee J Y 2015 J. Phys. D: Appl. Phys. 48 365106
|
[31] |
Su Z S, Li W L, Xu M L, Li T L, Wang D, Su W M, Niu J H, He H, Zhu J Z and Chu B 2007 J. Phys. D: Appl. Phys. 40 2783
|
[32] |
Wang X, Wang R, Zhou D and Yu J S 2016 Synth. Metals 214 50
|
[33] |
Zhang D D, Duan L, Li C, Li Y L, Li H Y, Zhang D Q and Qiu Y 2014 Adv. Mater. 26 5050.
|
[34] |
Lee C W, Renaud C, Rendu P Le, Nguyen T P, Seneclauze B, Ziessel R, Kanaan H and Jolinat P 2010 Solid State Sci. 12 1873
|
[35] |
Eom S H, Zheng Y, Wrzesniewski E, Lee J, Chopra, So F and Xue J G 2009 Appl. Phys. Lett. 94 153303
|
[36] |
Lee J H, Huang C L, Hsiao C H, Leung M K, Yang C C and Chao C C 2009 Appl. Phys. Lett. 94 223301
|
[37] |
Zhao J, Yu J S, Liu S Q and Jiang Y D 2012 J. Lumin. 132 1994
|
[38] |
Kang Y J and Lee J Y 2016 Org. Electron. 32 109
|
[39] |
Hung W Y, Ke T H, Lin Y T, Wu C C, Hung T H, Chao T C, Wong K T and Wu C I 2006 Appl. Phys. Lett. 88 064102
|
[40] |
Okamoto S, Tanaka K, Izumi Y, Adachi H, Yamaji T and Suzuki T 2001 Jpn. J. Appl. Phys. 40 (part 2, No.7B) L783
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|