Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047302    DOI: 10.1088/1674-1056/26/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhancement of Förster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices

Zijun Wang(王子君)1, Juan Zhao(赵娟)2, Chang Zhou(周畅)1, Yige Qi(祁一歌)1, Junsheng Yu(于军胜)1
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China(UESTC), Chengdu 610054, China;
2 School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
Abstract  Fluorescence/phosphorescence hybrid white organic light-emitting devices (WOLEDs) based on double emitting layers (EMLs) with high color stability are fabricated. The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence (TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone (DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2'] iridium (acetylacetonate) ((tbt)2Ir(acac)). Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline (Bphen) and 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene (TPBi) are selected as the electron transporting layer (ETL), and the thickness of yellow EML is adjusted to optimize device performance. The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage (CIE) coordinates variation of (0.017, 0.009) at a luminance ranging from 52 cd/m2 to 6998 cd/m2. The TPBi-based device yields a high efficiency with a maximum external quantum efficiency (EQE), current efficiency, and power efficiency of 10%, 21.1 cd/A, and 21.3 lm/W, respectively. The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer, so that Förster energy transfer (FRET) from DMAC-DPS to (tbt)2Ir(acac) is dominant, which is beneficial to keep the color stable. The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.
Keywords:  white organic light-emitting devices      non-doped emitting layers      thermally activated delayed fluorescence      color stability  
Received:  16 December 2016      Revised:  29 December 2016      Accepted manuscript online: 
PACS:  73.21.Ac (Multilayers)  
  78.60.Fi (Electroluminescence)  
  85.60.Jb (Light-emitting devices)  
  73.61.Ph (Polymers; organic compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675041 and 61605253), the Foundation for Innovation Research Groups of the National Natural Science Foundation of China (Grant No. 61421002), and the Science & Technology Department Program of Sichuan Province, China (Grant No. 2016HH0027).
Corresponding Authors:  Juan Zhao, Junsheng Yu     E-mail:  zhaoj95@mail.sysu.edu.cn;jsyu@uestc.edu.cn

Cite this article: 

Zijun Wang(王子君), Juan Zhao(赵娟), Chang Zhou(周畅), Yige Qi(祁一歌), Junsheng Yu(于军胜) Enhancement of Förster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices 2017 Chin. Phys. B 26 047302

[1] Sun Y, Giebink N C, Kanno H, Ma B, Thompson M E and Forrest S R 2006 Nature 440 908
[2] Kido J, Kimura M and Nagai K 1995 Science 267 1332
[3] Jou J H, Hsieh C Y, Tseng J R, Peng S H, Jou Y C, Hong J H, Shen S M, Tang M C, Chen P C and Lin C H 2013 Adv. Funct. Mater. 23 2750
[4] He Z S, Yu H M, Peng H and Hou X Y 2015 Chin. Phys. B 24 097201
[5] Liu B Q, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H and Peng J B 2013 Chin. Phys. B 22 077303
[6] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer. K, Lussem B and Leo K 2009 Nature 459 234
[7] Wang C, Li X L, Pan Y Y, Zhang S T, Yao L, Bai Q, Li W J, Liu P, Yang B, Su S J and Ma Y G 2016 ACS Appl. Mater. Interfaces 8 3041
[8] Liu X K, Chen Z, Zheng C J, Chen M, Liu W and Zhang X H 2015 Adv. Mater. 27 2025
[9] Zhang Y F, Lee J S and Forrest S R 2014 Nat. Commun. 5 5008
[10] Zhao F C, Zhang Z Q, Liu Y P, Dai Y, Chen J S and Ma D G 2012 Org. Electron. 13 1049
[11] Zheng C J, Wang J, Ye J, Lo M F, Liu K Q and Fung M K 2013 Adv. Mater. 25 2205.
[12] Sun N, Wang Q, Zhao Y B, Chen Y H, Yang D Z, Zhao F C, Chen J S and Ma D G 2014 Adv. Mater. 26 1617
[13] Ye J, Zheng C, Ou X M, Zhang X H, Fung M K and Lee C S 2012 Adv. Mater. 24 3410
[14] Zheng C J, Wang J, Ye J, Lo M F, Liu K Q, Fung M K, Zhang X H and Lee C S 2013 Adv. Mater. 25 2205
[15] Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y and Adachi C 2009 Adv. Mater. 21 4802
[16] Uoyama H, Goushi K, Shizu K, Nomura H and Adachi C 2012 Nature 492 234
[17] Nishide J, Nakanotani H, Hiraga Y and Adachi C 2014 Appl. Phys. Lett. 104 233304
[18] Kim B S and Lee J Y 2015 Org. Electron. 21 100
[19] Higuchi T, Nakanotani H and Adachi C 2015 Adv. Mater. 27 2019
[20] Sun J W, Kim K W, Moon C K, Lee J H and Kim J J 2016 ACS Appl. Mater. Interfaces 8 9806
[21] Wang Q, Oswald I W H, Perez M R, Jia H, Shahub A A, Qiao Q, Gnade B E and Omary M A 2014 Adv. Funct. Mater. 24 4746
[22] Yin Y M, Yu J, Cao H T, Zhang L T, Sun H Z and Xie W F 2014 Sci. Rep. 4 6754
[23] Xue K W, Han G G, Duan Y, Chen P, Yang Y Q, Yang D, Duan Y H, Wang X and Zhao Y 2015 Org. Electron. 18 84
[24] Xue K W, Sheng R, Chen B Y, Duan Y, Chen P and Yang Y Q, Wang X, Duan Y H and Zhao Y 2015 RSC Adv. 5 39097
[25] Yang H 2013 J. Lumin. 142 231
[26] Zhao Y, Chen J and Ma D 2013 ACS Appl. Mater. Interfaces 5 965
[27] Zhang Q S, Li B, Huang S P, Nomura H, Tanaka H and Adachi C 2014 Nat. Photon. 8 326
[28] Zhang Q S, Tsang D, Kuwabara H, Hatae Y, Li B, Takahashi T, Lee S Y, Yasuda T and Adachi C 2015 Adv. Mater. 27 2096
[29] Zhang D D, Cai M G, Zhang Y G, Zhang D Q and Duan L 2015 ACS Appl. Mater. Interfaces 7 28693
[30] Song W and Lee J Y 2015 J. Phys. D: Appl. Phys. 48 365106
[31] Su Z S, Li W L, Xu M L, Li T L, Wang D, Su W M, Niu J H, He H, Zhu J Z and Chu B 2007 J. Phys. D: Appl. Phys. 40 2783
[32] Wang X, Wang R, Zhou D and Yu J S 2016 Synth. Metals 214 50
[33] Zhang D D, Duan L, Li C, Li Y L, Li H Y, Zhang D Q and Qiu Y 2014 Adv. Mater. 26 5050.
[34] Lee C W, Renaud C, Rendu P Le, Nguyen T P, Seneclauze B, Ziessel R, Kanaan H and Jolinat P 2010 Solid State Sci. 12 1873
[35] Eom S H, Zheng Y, Wrzesniewski E, Lee J, Chopra, So F and Xue J G 2009 Appl. Phys. Lett. 94 153303
[36] Lee J H, Huang C L, Hsiao C H, Leung M K, Yang C C and Chao C C 2009 Appl. Phys. Lett. 94 223301
[37] Zhao J, Yu J S, Liu S Q and Jiang Y D 2012 J. Lumin. 132 1994
[38] Kang Y J and Lee J Y 2016 Org. Electron. 32 109
[39] Hung W Y, Ke T H, Lin Y T, Wu C C, Hung T H, Chao T C, Wong K T and Wu C I 2006 Appl. Phys. Lett. 88 064102
[40] Okamoto S, Tanaka K, Izumi Y, Adachi H, Yamaji T and Suzuki T 2001 Jpn. J. Appl. Phys. 40 (part 2, No.7B) L783
[1] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[2] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[3] Improvement of electro-optic performances in white organic light emitting diodes with color stability by buffer layer and multiple dopants structure
Zhi-Qi Kou(寇志起), Yu Tang(唐宇), Li-Ping Yang(杨丽萍), Fei-Yu Yang(杨飞宇), Wen-Jun Guo(郭文军). Chin. Phys. B, 2018, 27(10): 107801.
[4] Luminescent properties of thermally activated delayed fluorescence molecule with intramolecular π-π interaction betweendonor and acceptor
Lei Cai(蔡磊), Jianzhong Fan(范建忠), Xiangpeng Kong(孔祥朋), Lili Lin(蔺丽丽), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(11): 118503.
[5] Enhancement of electroluminescent properties of organic optoelectronic integrated device by doping phosphorescent dye
Shu-ying Lei(雷疏影), Jian Zhong(钟建), Dian-li Zhou(周殿力), Fang-yun Zhu(朱方云), Chao-xu Deng(邓朝旭). Chin. Phys. B, 2017, 26(11): 117001.
[6] Color-stable, reduced efficiency roll-off hybrid white organic light emitting diodes with ultra high brightness
Liu Bai-Quan (刘佰全), Tao Hong (陶洪), Su Yue-Ju (苏跃举), Gao Dong-Yu (高栋雨), Lan Lin-Feng (兰林锋), Zou Jian-Hua (邹建华), Peng Jun-Biao (彭俊彪). Chin. Phys. B, 2013, 22(7): 077303.
[7] Flexible white top-emitting organic light-emitting diode with a MoOx roughness improvement layer
Chen Shu-Fen (陈淑芬), Guo Xu (郭旭), Wu Qiang (邬强), Zhao Xiao-Fei (赵晓飞), Shao Ming (邵茗), Huang Wei (黄维). Chin. Phys. B, 2013, 22(12): 128506.
No Suggested Reading articles found!