INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Probing conformational change of T7 RNA polymerase and DNA complex by solid-state nanopores |
Xin Tong(童鑫)1, Rui Hu(胡蕊)1, Xiaoqing Li(李晓晴)1, Qing Zhao(赵清)1,2 |
1 State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China |
|
|
Abstract Proteins are crucial to most biological processes, such as enzymes, and in various catalytic processes a dynamic motion is required. The dynamics of protein are embodied as a conformational change, which is closely related to the flexibility of protein. Recently, nanopore sensors have become accepted as a low cost and high throughput method to study the features of proteins. In this article, we used a SiN nanopore device to study the flexibility of T7 RNA polymerase (RNAP) and its complex with DNA promoter. By calculating full-width at half-maximum (FWHM) of Gaussian fits to the blockade histograms, we found that T7 RNAP becomes more flexible after binding DNA promoter. Moreover, the distribution of fractional current blockade suggests that flexibility alters due to a breath-like change of the volume.
|
Received: 19 June 2018
Revised: 14 August 2018
Accepted manuscript online:
|
PACS:
|
87.80.Nj
|
(Single-molecule techniques)
|
|
62.23.St
|
(Complex nanostructures, including patterned or assembled structures)
|
|
87.15.-v
|
(Biomolecules: structure and physical properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51622201, 91733301, and 61571015). |
Corresponding Authors:
Qing Zhao
E-mail: zhaoqing@pku.edu.cn
|
Cite this article:
Xin Tong(童鑫), Rui Hu(胡蕊), Xiaoqing Li(李晓晴), Qing Zhao(赵清) Probing conformational change of T7 RNA polymerase and DNA complex by solid-state nanopores 2018 Chin. Phys. B 27 118705
|
[1] |
Li J, Stein D, McMullan C, Branton D, Aziz M J and Golovchenko J A 2001 Nature 412 166
|
[2] |
Dekker C 2007 Nat. Nanotech. 2 209
|
[3] |
Venkatesan B M and Bashir R 2011 Nat. Nanotech. 6 616
|
[4] |
Haque F, Li J H, Wu H C, Ling X J and Guo P X 2013 Nano Today 8 56
|
[5] |
Li J, Gershow M, Stein D, Brandin E and Golovchenko J A 2003 Nat. Mater. 2 611
|
[6] |
Storm A J, Chen J H, Zandbergen H and Dekker C 2005 Phys. Rev. E 71 051903
|
[7] |
Storm A J, Storm C, Chen J H, Zandbergen H, Joanny J F and Dekker C 2005 Nano Lett. 5 1193
|
[8] |
Wanunu M, Sutin J, McNally B, Chow A and Meller A 2008 Biophys. J. 95 4716
|
[9] |
Wanunu M, Sutin J and Meller A 2009 Nano Lett. 9 3498
|
[10] |
Henley R Y, Ashcroft B A, Farrell I, Cooperman B S, Lindsay S M and Wanunu M 2016 Nano Lett. 16 138
|
[11] |
Kowalczyk S W, Hall A R and Dekker C 2010 Nano Lett. 10 324
|
[12] |
Alibakhshi M A, Halman J R, Wilson J, Aksimentiev A, Afonin K A and Wanunu M 2017 ACS Nano 11 9701
|
[13] |
Fologea D, Ledden B, McNabb D S and Li J 2007 Appl. Phys. Lett. 91 539011
|
[14] |
Yusko E C, Johnson J M, Majd S, Prangkio P, Rollings R C, Li J, Yang J and Mayer M 2011 Nat. Nanotech. 6 253
|
[15] |
Larkin J, Henley R Y, Muthukumar M, Rosenstein J K and Wanunu M 2014 Biophys. J. 106 696
|
[16] |
Yusko E C, Bruhn B R, Eggenberger O M, Houghtaling J, Rollings R C, Walsh N C, Nandivada S, Pindrus M, Hall A R, Sept D, Li J, Kalonia D S and Mayer M 2017 Nat. Nanotech. 12 360
|
[17] |
Kowalczyk S W, Hall A R and Dekker C 2010 Nano Lett. 10 324
|
[18] |
Raillon C, Cousin P, Traversi F, Garcia-Cordero E, Hernandez N and Radenovic A 2012 Nano Lett. 12 1157
|
[19] |
Ivankin A, Carson S, Kinney S R and Wanunu M 2013 J. Am. Chem. Soc. 135 15350
|
[20] |
Bell N A W and Keyser U F 2015 J. Am. Chem. Soc. 137 2035
|
[21] |
Plesa C, Ruitenberg J W, Witteveen M J and Dekker C 2015 Nano Lett. 15 3153
|
[22] |
Sze J Y Y, Ivanov A P, Cass A E G and Edel J B 2017 Nat. Commun. 8 1552
|
[23] |
Teague S J 2003 Nat. Rev. Drug Discov. 2 527
|
[24] |
Radivojac P, Obradovic Z, Smith D K, Zhu G, Vucetic S, Brown C J, Lawson J D and Dunker A K 2004 Protein Sci. 13 71
|
[25] |
Allen T W, Andersen O S and Roux B 2004 J. Gen. Physiol. 124 679
|
[26] |
Kokkinidis M, Glykos N M and Fadouloglou V E 2012 Adv. Protein Chem. Struct. Bio. 87 181
|
[27] |
Bershtein S, Mu W, Serohijos A W, Zhou J and Shakhnovich E I 2013 Mol. Cell 49 133
|
[28] |
Celej M S, Montich G G and Fidelio G D 2003 Protein Sci. 12 1496
|
[29] |
Fraser J S, van den Bedem H, Samelson A J, Lang P T, Holton J M, Echols N and Alber T 2011 Proc. Nat. Acad. Sci. USA 108 16247
|
[30] |
Park S J, Borin B N, Martinez-Yamout M A and Dyson H J 2011 Nat. Struc. Mol. Biol. 18 537
|
[31] |
Waduge P, Hu R, Bandarkar P, Yamazaki H, Cressiot B, Zhao Q, Whitford P C and Wanunu M 2017 ACS Nano 11 5706
|
[32] |
Hu R, Rodrigues J V, Waduge P, Yamazaki H, Cressiot B, Chishti Y, Makowski E, Shakhnovich E, Zhao Q and Wanunu M 2018 ACS Nano 12 4494
|
[33] |
Ujvári A and Martin C T 1996 Biochemistry 35 14574
|
[34] |
Jia Y and Patel S S 1997 Biochemistry 36 4223
|
[35] |
Sousa R, Chung Y J, Rose J P and Wang B C 1993 Nature 364 593
|
[36] |
Cheetham G M, Jeruzalmi D and Steitz T A 1999 Nature 399 80
|
[37] |
Jeruzalmi D and Steitz T A 1998 EMBO J. 17 4101
|
[38] |
Muller D K, Martin C T and Coleman J E 1988 Biochemistry 27 5763
|
[39] |
Kim Y, Eom S H, Wang J, Lee D, Suh S W and Steitz A 1995 Nature 376 612
|
[40] |
Mookhtiar K A, Peluso P S, Muller D K, Dunn J J and Coleman J E 1991 Biochemistry 30 6305
|
[41] |
Steitz T A 1993 Curr. Opin. Struct. Biol. 3 31
|
[42] |
Raskin C A, Diaz G, Joho K and McAllister W T 1992 J. Mol. Biol. 228 506
|
[43] |
Holm L and Sander C 1994 Proteins 19 165
|
[44] |
Gardner L P, Mookhtiar K A and Coleman J E 1997 Biochemistry 36 2908
|
[45] |
Chen Y C and Jeng S T 2000 Biosci. Biotechnol. Biochem. 64 1126
|
[46] |
Han A, Creus M, Schürmann G, Linder V, Ward T R, Rooij N F and Staufer U 2008 Anal. Chem. 80 4651
|
[47] |
Ito T, Sun L and Crooks R M 2003 Anal. Chem. 75 2399
|
[48] |
Smeets R M, Kowalczyk S W, Hall A R, Dekker N H and Dekker C 2009 Nano Lett. 9 3089
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|