Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120501    DOI: 10.1088/1674-1056/22/12/120501
GENERAL Prev   Next  

Scheduling of high-speed rail traffic based on discrete-time movement model

Sun Ya-Hua (孙亚华), Cao Cheng-Xuan (曹成铉), Xu Yan (许琰), Wu Chao (吴超)
State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
Abstract  In this paper, a new simulation approach for solving the mixed train scheduling problem on the high-speed double-track rail line is presented. Based on the discrete-time movement model, we propose control strategies for mixed train movement with different speeds on a high-speed double-track rail line, including braking strategy, priority rule, travelling strategy, and departing rule. A new detailed algorithm is also presented based on the proposed control strategies for mixed train movement. Moreover, we analyze the dynamic properties of rail traffic flow on a high-speed rail line. Using our proposed method, we can effectively simulate the mixed train schedule on a rail line. The numerical results demonstrate that an appropriate decrease of the departure interval can enhance the capacity, and a suitable increase of the distance between two adjacent stations can enhance the average speed. Meanwhile, the capacity and the average speed will be increased by appropriately enhancing the ratio of faster train number to slower train number from 1.
Keywords:  train control      discrete-time model      simulation      rail traffic flow  
Received:  13 March 2013      Revised:  08 May 2013      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.60.-k (Transport processes)  
  89.40.Bb (Land transportation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB725400), the National Natural Science Foundation of China (Grant No. 71131001-1), and the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China (Grant Nos. RCS2012ZZ001 and RCS2012ZT001).
Corresponding Authors:  Cao Cheng-Xuan     E-mail:  cxcao@bjtu.edu.cn

Cite this article: 

Sun Ya-Hua (孙亚华), Cao Cheng-Xuan (曹成铉), Xu Yan (许琰), Wu Chao (吴超) Scheduling of high-speed rail traffic based on discrete-time movement model 2013 Chin. Phys. B 22 120501

[1] Kraft E R 1987 Transp. Res. Forum 28 263
[2] van Dijk N M 1993 Oper. Res. Proceedings 523
[3] Iyer R J and Ghosh S 1995 IEEE Tran. Vehicle Tech. 44 180
[4] Chang C and Sim S S 1997 IEE Proc.-Electr. Power Appl. 144 65
[5] Howlett P G and Cheng J 1997 J. Aust. Math. Soc. B 38 388
[6] Howlett P G 2000 Ann. Oper. Res. 98 65
[7] Huisman T and Boucherie R J 2001 Transp. Res. Part B 35 271
[8] Chang C and Xu D 2002 IEE Proc.-Electr. Power Appl. 147 206
[9] Ning B, Li K and Gao Z 2005 Int. J. Mod. Phys. C 16 1793
[10] Effati S and Roohparvar H 2006 Appl. Math. Comput. 175 1415
[11] Szpigel B 1973 Opns. Res. 72 343
[12] Sauder L and Westerman W M 1983 Interf. 13 24
[13] Higgins A, Kozan E and Ferreira L 1996 Transp. Res. Part B 30 147
[14] Dorfman M J and Medanic J 2004 Transp. Res. Part B 38 81
[15] Li K and Gao Z 2006 Int. J. Mod. Phys. C 17 1349
[16] Li K and Gao Z 2007 Simul. Model. Pract. Th. 15 1156
[17] Li K, Gao Z and Yang L 2007 Sci. China Ser. E 50 765
[18] Li F, Gao Z, Li K and Yang L 2008 Transp. Res. Part B 42 1008
[19] Yang L, Li F, Gao Z and Li K 2010 Chin. Phys. B 19 100510
[20] Wang M, Zeng J, Qian Y, Li W, Yang F and Jia X 2012 Chin. Phys. B 21 070502
[21] Zhou H, Gao Z and Li K 2006 Acta Phys. Sin. 55 1706 (in Chinese)
[22] Xun J, Ning B and Li K 2007 Acta Phys. Sin. 56 5158 (in Chinese)
[23] Wang H and Qian Y 2008 Rail Transp. Econ. 30 82 (in Chinese)
[24] Xu Y, Cao C, Li M and Luo J 2012 Commun. Theor. Phys. 58 847
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[7] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[8] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[13] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[14] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[15] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
No Suggested Reading articles found!