Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117401    DOI: 10.1088/1674-1056/22/11/117401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Paraconductivity study in ErBa2Cu3-xMxO7-δ (M = Zn, Fe) superconductors

A. Sedkya b, S. B. Mohameda
a Physics Department, Faculty of Science, King Faisal University, Al-Hassa 31982, Saudi Arabia;
b Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
Abstract  We report here the paraconductivity of ErBa2Cu3-xMxO7-δ (M = Zn and Fe) superconductors. The logarithmic plots of excess conductivity Δσ and reduced temperature C reveal two different exponents corresponding to crossover temperature as a result of shifting the order parameter from 2 to 3. The first exponent in the normal field region is close to 1, in which the order parameter dimensionality (OPD) is 2. The second exponent in the critical field region is close to 0.5, in which the OPD is 3. The coherence length, interlayer coupling, interlayer separation and carrier concentration decrease with increasing doping content, and their values for Fe samples are different from those of Zn samples. While anisotropy is increased with increasing doping content, it is generally higher for a Zn sample than that for an Fe sample. We also estimate several physical parameters such as upper critical magnetic fields in the a–b plane and along the c axis (Bab and Bc), and critical current density J at 0 K. Although Bab and Bc are generally increased with doping content increasing, the value of Bab is found to be twice more than that of Bc. A similar behavior is obtained for J (0 K) and its value is higher in the Fe sample than that in the Zn sample. These results are discussed in terms of oxygen deficiency, localization of carriers, and flux pinning, which are produced by doping.
Keywords:  ceramics      chemical synthesis      X-ray diffraction      electrical properties      transport properties  
Received:  13 June 2013      Revised:  02 August 2013      Accepted manuscript online: 
PACS:  74.25.Bt (Thermodynamic properties)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  74.62.En (Effects of disorder)  
  74.72.Gh (Hole-doped)  
Corresponding Authors:  A. Sedky     E-mail:  sedky1960@yahoo.com; asedky@kfu.edu.sa

Cite this article: 

A. Sedky, S. B. Mohamed Paraconductivity study in ErBa2Cu3-xMxO7-δ (M = Zn, Fe) superconductors 2013 Chin. Phys. B 22 117401

[1] Fisher D S, Fisher M PA and Huse D A 1991 Phys. Rev. B 43 130
[2] Aswal D K, Singh A, Sen S, Kaur M, Viswandham C S, Goswami G L and Gupta S K 2002 J. Phys. Chem. Solids 63 1797
[3] Maki K and Thompson R S 1988 Phys. Rev. B 39 2767
[4] Vidal F, Veira J A, Maja J, Ponte J J, Alvarado F G, Mordan E, Amador J and Cascales C 1988 Physica C 156 807
[5] Baraduc C, Pagnon V, Buzdin A, Henry J and Ayache C 1992 Phys. Lett. A 166 267
[6] Malik S K and Shah S S 1992 High Temperature Superconductivity (NewYork: Nova Science)
[7] LoramW, Wheatley J M, Mirza K A and Liu R S 1992 Phil. Mag. B 65 1405
[8] Ghosh A K, Bandyopadhyay S K, Barat P, Pintu S and Basu A N 1995 Physica C 255 319
[9] Weaver B D, Jackson E M, Summers G P and Jackson E A 1992 Phys. Rev. B 46 1134
[10] Anderson W and Zou Z 1988 Phys. Rev. Lett 60 132
[11] Aslamazov L G and Larkin A I 1968 Phys. Lett. A 26 238
[12] LawrenceWE, Doniach S and Proc S 1970 12th International Conference of Low Tempature Physics 1971 Keigaku, Tokyo, p. 361
[13] Gosh A K, Bandyopadhyay S K and Basu A N 1999 J. Appl. Phys. 86 3247
[14] Ghosh A K, Bandyopadhyay S K, Barat P, PintuS and Basu A N 1996 Physica C 264 255
[15] Ramallo M V, Torron C and Vidal F 1994 Physica C 230 97
[16] Baraduc C and Bazdin A 1992 Phys. Lett. A 171 408
[17] Ghosh A K, Bandyopadhyay S K, Barat P, PintuS and Basu A N 1995 Physica C 255 319
[18] Reggiani L, Vaglio R and Varlamov A A 1991 Phys. Rev. B 44 9541
[19] Vidal F, Veira J A, Maza J, Garcia-Alvarado F, Moran E and Alario M A 1988 J. Phys. C 21 L9
[20] Sedky A 2007 J. Low Temp. Phys. 148 53
[21] Veira J A, Maza J and Vida F J 1988 Phys. Lett. A 131 310
[22] Ghosh A K Bandyopadhyay S K and Basu A N 1997 Mod. Phys. Lett. B 11 1013
[23] Ghosh A K and Basu A N 2000 Supercond. Sci. Tech. 13 343
[24] Bhatia S N and Dhard C P 1994 Phys. Rev. B 49 12206
[25] Rojas Sarmiento M P, Uribe Laverde M A, Vera Lopez E, Landinez Tellez D A and Roa Rojas J 2007 Physica B 398 360
[26] Vovk R V, Obolenskii M A, Bondarenko A V, Goulatis I L and Chroneos A 2007 Acta Phys. Pol. 111 129
[27] Presland M R, Tallon J L, Buckley R G, Liu R S and Floer N E 1991 Physica C 176 95
[28] Matsuda A, Kinoshita K, Ishii T, Shibata H, Watanabe T and Yamada T 1988 Phys. Rev. B 38 2910
[29] Mandal P, Poddar A and Das A N 1994 J. Phys: Condens Matter 6 5689
[30] Ghorbani S R and Homaei M 2011 Mod. Phys. Lett. B 25 1915
[31] Nawazish A K, Najmul H, Sana N, Babar S, Sajid K and Azhar A R 2010 J. Appl. Phys. 107 083910
[32] Petrovie Y, Fasano R, Lortz M, Dcrous M, Potel M and Cheriel R 2007 Physica C 460 702
[33] Gupta A, Lal R, Sedky A, Narlikar A V and Awana V P S 2001 Phys. Rev. B 61 11752
[34] Wordenweber R, Heinemann K, Sastry G V S and Freyhardt H C 1989 Physica C 162 1601
[35] Asaturian R A, Sarkissian A G, Ignatian E L and Begoian K G 1995 Solid State Commun. 95 389
[36] Lobb C J 1987 Phys. Rev. B 36 3930
[37] Loram J W, Copper J R and Mirza K A 1991 Supercond. Sci. Tech. 4 S391
[38] Cooper J R, Obretelli S D, Freeman P A and Zheng D N 1991 Supercond. Sci. Tech. 4 S277
[39] Rusiecki S, Bucher B, Kaldis E, Jilek E and Karpinski J 1990 J. Less- Common Metals 164 31
[40] Ulm E R, Kim J T, Lemberger T R, Foltyn S R and Wu X 1995 Phys. Rev. B 51 9193
[41] Porch A, Cooper J R, Zheng D N and Waldram J R 1993 Physica C 214 350
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[5] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[6] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[7] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[8] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[9] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[10] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[11] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[12] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[13] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[14] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[15] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
No Suggested Reading articles found!