a Key Laboratory for Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China; b School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
Abstract The alternation from bipolar to unipolar resistive switching is observed in perovskite La0.01Sr0.99TiO3 thin films. These two switching modes can be activated separately depending on the compliance current (Icomp) during the electroforming process: with a higher Icomp (5 mA) the unipolar resistance switching behavior is measured, while the bipolar resistance switching behavior is observed with a lower Icomp (1 mA). On the basis of I–V characteristics, the switching mechanisms for the URS and BRS modes are considered as being a change in the Schottky-like barrier height and/or width at the Pt/La-SrTiO3 interface and the formation and disruption of conduction filaments, respectively.
Fund: Project supported by the Key Projects of the National Natural Science Foundation of China (Grant No. 11032010), the National Natural Science Foundation of China (Grant Nos. 51072171, 61274107, 61176093, and 11275163), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1080), the National Basic Rearch Program of China (Grant No. 2012CB326404), the Key Projects of Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A129), the Doctoral Program of Higher Education of China (Grant No. 20104301110001), and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China.
A low specific on-resistance SOI MOSFET with dual gates and recessed drain Luo Xiao-Rong (罗小蓉), Luo Yin-Chun (罗尹春), Fan Ye (范叶), Hu Gang-Yi (胡刚毅), Wang Xiao-Wei (王骁玮), Zhang Zheng-Yuan (张正元), Fan Yuan-Hang (范远航), Cai Jin-Yong (蔡金勇), Wang Pei (王沛), Zhou Kun (周坤). Chin. Phys. B, 2013, 22(2): 027304.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.