Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 048403    DOI: 10.1088/1674-1056/21/4/048403
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An open-styled dielectric-lined azimuthally periodic circular waveguide for a millimeter wave traveling-wave tube

Liu Yang(刘漾), Wei Yan-Yu(魏彦玉), Xu Jin(徐进), Yin Hai-Rong(殷海荣), Yue Ling-Na(岳玲娜), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥)
Vacuum Electronics National Laboratory, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  An open-styled dielectric-lined azimuthally periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW). The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method, which includes normalized phase velocity and interaction impedance. The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS. The influence of structural parameters on the RF properties is investigated based on our theory. The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance, with the dielectric constant held fixed. Finally, the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW. The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics, which may significantly improve the stability of an open-styled DLAP-CW-based TWT, and the interaction efficiency is also improved.
Keywords:  dispersion characteristics      slow-wave structure      millimeter wave traveling-wave tube      spatial harmonics method  
Received:  02 August 2011      Revised:  19 September 2011      Accepted manuscript online: 
PACS:  84.47.+w (Vacuum tubes)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60971038) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054).
Corresponding Authors:  Wei Yan-Yu,yywei@uestc.edu.cn     E-mail:  yywei@uestc.edu.cn

Cite this article: 

Liu Yang(刘漾), Wei Yan-Yu(魏彦玉), Xu Jin(徐进), Yin Hai-Rong(殷海荣), Yue Ling-Na(岳玲娜), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) An open-styled dielectric-lined azimuthally periodic circular waveguide for a millimeter wave traveling-wave tube 2012 Chin. Phys. B 21 048403

[1] Menninger W L, Robbins N R and Dibb D E 2007 IEEE Trans. Electron Dev. 54 181
[2] Gong Y B, Wei Y Y and Huang M Z 2008 GMSS 978
[3] Lu Z G, Gong Y B, Wei Y Y and Wang W X 2006 Chin. Phys. 15 2661
[4] Chong C K, Davis J A and Le Brogn R H 2005 IEEE Trans. Electron Dev. 52 653
[5] Legarra J R, Kolda P E and Freund H P 2002 IEEE MTT-s Digest 625
[6] He J, Wei Y Y, Gong Y B and Wang W X 2009 Chin. Phys. Lett. 26 114103
[7] Wei Y Y, Wang W X, Sun J H, Liu S G, Jia B F and Park Gun-Sik 2002 Chin. Phys. 11 277
[8] He J, Wei Y Y, Gong Y B and Wang W X 2011 Chin. Phys. B 20 054102
[9] Xu A, Wang W X, Wei Y Y, Gong Y B, Wang Z L, Fu C F and Yin H R 2009 Acta Phys. Sin. 58 3592 (in Chinese)
[10] He J, Wei Y Y, Gong Y B, Duan Z Y and Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese)
[11] Liu Y, Wei Y Y, Gong Y B and Wang W X 2010 IEEE Trans. Electron Dev. 57 2019
[12] Collin R E 1960 Field Theory of Guided Waves (New York: McGraw-Hill) Chap. 11
[13] Ioannidis Z C, Dumbrajs O and Tigelis I G 2004 IEEE Trans. Plasma Sci. 32 861
[14] Ioannidis Z C, Latas G P and Tigelis I G 2008 IEEE Trans. Plasma Sci. 36 2613
[15] Iatrou C T, Kern S and Pavelyev A B 1996 IEEE Trans. Microwave Theory Tech. 44 56
[16] Fu C F, Wei Y Y, Duan Z Y, Wang W X and Gong Y B 2009 Chin. Phys. 18 2749
[17] He J, Wei Y Y, Gong Y B, Duan Z Y, Lu Z G and Wang W X 2010 Acta Phys. Sin. 59 6659 (in Chinese)
[18] AnosftCorp. 2001 (more information available online: http://www.ansoft.com/)
[19] Mathworks. Inc., Natick, Massachusetts 2004 (more information available online: http://www.mathworks.com/)
[1] Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube
Fang-ming He(何昉明), Wen-qiu Xie(谢文球), Ji-run Luo(罗积润), Min Zhu(朱敏), Wei Guo(郭炜). Chin. Phys. B, 2016, 25(3): 038401.
[2] A novel multi-pin rectangular waveguide slow-wave structure based backward wave amplifier at 340 GHz
Zhang Kai-Chun (张开春), Qi Zhong-Kuo (漆中阔), Yang Zhao-Long (杨召龙). Chin. Phys. B, 2015, 24(7): 079402.
[3] A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes
Liu Lu-Wei (刘鲁伟), Wei Yan-Yu (魏彦玉), Wang Shao-Meng (王少萌), Hou Yan (侯艳), Yin Hai-Rong (殷海荣), Zhao Guo-Qing (赵国庆), Duan Zhao-Yun (段兆云), Xu Jin (徐进), Gong Yu-Bin (宫玉彬), Wang Wen-Xiang (王文祥), Yang Ming-Hua (杨明华). Chin. Phys. B, 2013, 22(10): 108401.
[4] Design of a reentrant double staggered ladder circuit for V-band coupled-cavity traveling-wave tube
Liu Yang(刘洋), Xu Jin(徐进), Lai Jian-Qiang(赖剑强), Xu Xiong(许雄), Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Huang Min-Zhi(黄民智), Tang Tao(唐涛), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(7): 074202.
[5] Research of sine waveguide slow-wave structure for a 220-GHz backward wave oscillator
Xu Xiong(许雄), Wei Yan-Yu(魏彦玉), Shen Fei(沈飞), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Duan Zhao-Yun(段兆云), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(6): 068402.
[6] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[7] Investigation of a wideband folded double-ridged waveguide slow-wave system
He Jun(何俊), Wei Yan-Yu(魏彦玉), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥). Chin. Phys. B, 2011, 20(5): 054102.
[8] Dispersion characteristics of a slow wave structure with a modified photonic band gap
Gao Xi(高喜), Yang Zi-Qiang(杨梓强), Cao Wei-Ping(曹卫平), and Jiang Yan-Nan(姜彦南) . Chin. Phys. B, 2011, 20(3): 030703.
[9] Small-signal analysis of a rectangular helix structure traveling-wave-tube
Fu Cheng-Fang(付成芳), Wei Yan-Yu(魏彦玉), Duan Zhao-Yun(段兆云), Wang Wen-Xiang(王文祥), and Gong Yu-Bin(宫玉彬). Chin. Phys. B, 2009, 18(7): 2749-2756.
[10] Comparative research on three types of coaxial slow wave structures
Xiao Ren-Zhen(肖仁珍), Liu Guo-Zhi(刘国治), and Chen Chang-Hua(陈昌华). Chin. Phys. B, 2008, 17(10): 3807-3811.
[11] Variational analysis of the disc-loaded waveguide slow-wave structures
Li Jian-Qing (李建清), Mo Yuan-Long (莫元龙). Chin. Phys. B, 2005, 14(11): 2300-2304.
No Suggested Reading articles found!