Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 068403    DOI: 10.1088/1674-1056/21/6/068403
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A staggered double vane circuit for a W-band traveling-wave tube amplifier

Lai Jian-Qiang(赖剑强), Wei Yan-Yu(魏彦玉), Liu Yang(刘洋), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Wang Wen-Xiang(王文祥), and Gong Yu-Bin(宫玉彬)
National Key Laboratory of Science and Technology on Vacuum Electronics, School of Physical Electronics,University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam, a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper. The main advantages of round beam operation over the sheet beam is that the round beam can be formed more easily and the focus requirement can be dramatically reduced. It operates in the fundamental mode at the first spatial harmonic. The geometric parameters are optimized and a transition structure for the slow wave circuit is designed which can well match the signal that enters into and goes out from the tube. Then a TWT model is established and the particle-in-cell (PIC) simulation results show that the tube can provide over 200-W output power in a frequency range of 88 GHz-103 GHz with a maximum power of 289 W at 95 GHz, on the assumption that the input power is 0.1 W and the beam power is 5.155 kW. The corresponding conversion efficiency and gain at 95 GHz are expected to be 5.6% and 34.6 dB, respectively. Such amplifiers can potentially be used in high power microwave-power-modules (MPM) and for other portable applications.
Keywords:  traveling-wave tube      staggered double vane      slow wave structure      W-band  
Received:  10 October 2011      Revised:  28 November 2011      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  85.45.Bz (Vacuum microelectronic device characterization, design, and modeling)  
  84.30.Le (Amplifiers)  
Fund: Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 61125103), the National Natural Science Foundation of China (Grant Nos. 60971038 and 60971031), and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009Z003).
Corresponding Authors:  Lai Jian-Qiang     E-mail:  LJQ6601@foxmail.com

Cite this article: 

Lai Jian-Qiang(赖剑强), Wei Yan-Yu(魏彦玉), Liu Yang(刘洋), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Wang Wen-Xiang(王文祥), and Gong Yu-Bin(宫玉彬) A staggered double vane circuit for a W-band traveling-wave tube amplifier 2012 Chin. Phys. B 21 068403

[1] Qiu J X, Levush B, Pasour J, Katz A, Armstrong C M, Whaley D R, Tucek J, Kreischer K and Gallagher D 2009 IEEE Microw. Mag. 10 38
[2] Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L and Bing P B 2011 Chin. Phys. B 20 054207
[3] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Park J and Temkin R J 2009 IEEE Trans. Terahertz Sci. Tech. 56 713
[4] He J, Wei Y Y, Gong Y B, Duan Z Y and Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese)
[5] Liu W X, Huang W H, Du Y C, Yan L X, Wu D and Tang C X 2011 Chin. Phys. B 20 074102
[6] Cascone M 2008 Proc. IEEE Int. Vac. Electron. Conf., April 22-24, 2008 Monterey, USA p. 12
[7] Hu Y L, Yang Z H, Li J Q, Li B, Gao P and Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese)
[8] Zhang C Q, Gong Y B, Wei Y Y and Wang W X 2010 Acta Phys. Sin. 59 6653 (in Chinese)
[9] Peng W F, Hu Y L, Yang Z H, Li J Q, Lu Q R and Li B 2011 Chin. Phys. B 20 028401
[10] Du C H, Liu P K and Xue Q Z 2010 Acta Phys. Sin. 59 4611 (in Chinese)
[11] Feng J J, Hu Y F, Cai J, Ma S Y and Wu X P 2010 Proc. IEEE Int. Vac. Electron. Conf., May 21-24, 2010, Monterey, USA p. 501
[12] Feng J J, Hu Y F, Cai J, Wu X P and Tang Y 2010 Vacuum Electronics 2 27 (in Chinese)
[13] Kory C, Ives R L, Read M, Booske J, Jiang H, van der Walls D, Ho S J, Sengele S and Phillips P 2006 Proc. IEEE Int. Vac. Electron. Conf., April 25-27, 2006, Monterey USA p. 447
[14] Gerum W, Lippert G, Malzahn P and Schneider K 2001 IEEE Trans. Electron Dev. 48 72
[15] Kory C L, Dayton J A, Mearini G T Jr, Malta D, Lueck M, Gilchrist K and Vancil B 2009 Proc. IEEE Int. Vac. Electron. Conf., April 28-30, 2009, Rome, Italy p. 125
[16] Communication and Power Industry, Model VTW-6495A2, online available: www.cpii.com
[17] Kory C L, Read M E, Ives R L, Booske J H and Borchard P 2009 IEEE Trans. Electron Dev. 56 713
[18] Theiss A J, Meadows C J, Freeman R, True R B, Martin J M and Montgomery K L 2010 IEEE Trans. Plasma Sci. 38 1239
[19] Shin Y M and Barnett L R 2008 Appl. Phys. Lett. 92 091501
[20] Ansoft Corp., Ansoft HFSS User's Reference, online available: http://www.ansoft.com.cn/
[21] CST Corp., CST MWS Tutorials, online available: http://www.cst-china.cn/cst2009/
[22] Gilmour A S Jr 1994 Principles of Traveling-Wave Tubes (Boston, Norwood, MA: Artech House) p. 218
[23] Lai J Q, Gong Y B, Xu X, Wei Y Y, Duan Z Y, Wang W X and Feng J J 2012 IEEE Trans. Electron Dev. 59 496
[24] Wang J X, Barnett L R, Luhmann N C Jr, Shin Y M and Humphries S 2010 Phys. Plasmas 17 043111
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[3] Experimental demonstration of narrow-band rugate minus filters using rapidly alternating deposition technology
Ying Zhang(章瑛), Yan-Zhi Wang(王胭脂), Jiao-Ling Zhao(赵娇玲), Jian-Da Shao(邵建达), Shuang-Chen Ruan(阮双琛). Chin. Phys. B, 2018, 27(5): 054217.
[4] Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss
Yu Ying-Ying (于莹莹), Li Xu-You (李绪友), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2015, 24(6): 068702.
[5] Design and development of high linearity millimeter wave traveling-wave tube for satellite communications
He Jun (何俊), Huang Ming-Guang (黄明光), Li Xian-Xia (李现霞), Li Hai-Qiang (李海强), Zhao Lei (赵磊), Zhao Jian-Dong (赵建东), Li Yue (李跃), Zhao Shi-Lei (赵石雷). Chin. Phys. B, 2015, 24(10): 104102.
[6] A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes
Liu Lu-Wei (刘鲁伟), Wei Yan-Yu (魏彦玉), Wang Shao-Meng (王少萌), Hou Yan (侯艳), Yin Hai-Rong (殷海荣), Zhao Guo-Qing (赵国庆), Duan Zhao-Yun (段兆云), Xu Jin (徐进), Gong Yu-Bin (宫玉彬), Wang Wen-Xiang (王文祥), Yang Ming-Hua (杨明华). Chin. Phys. B, 2013, 22(10): 108401.
[7] Design of a reentrant double staggered ladder circuit for V-band coupled-cavity traveling-wave tube
Liu Yang(刘洋), Xu Jin(徐进), Lai Jian-Qiang(赖剑强), Xu Xiong(许雄), Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Huang Min-Zhi(黄民智), Tang Tao(唐涛), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(7): 074202.
[8] An open-styled dielectric-lined azimuthally periodic circular waveguide for a millimeter wave traveling-wave tube
Liu Yang(刘漾), Wei Yan-Yu(魏彦玉), Xu Jin(徐进), Yin Hai-Rong(殷海荣), Yue Ling-Na(岳玲娜), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(4): 048403.
[9] Investigation of a wideband folded double-ridged waveguide slow-wave system
He Jun(何俊), Wei Yan-Yu(魏彦玉), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥). Chin. Phys. B, 2011, 20(5): 054102.
[10] Observation of the near transform-limited high-resolution tunable far-ultraviolet light
Zheng Huai-Bin(郑淮斌), Zhang Yan-Peng(张彦鹏), Nie Zhi-Qiang(聂志强), Li Chang-Biao(李昌彪), Song Jian-Ping(宋建平), Li Chuang-She(李创社), and Lu Ke-Qing(卢克清). Chin. Phys. B, 2009, 18(7): 2729-2733.
[11] Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures
Gao Xi(高喜), Yang Zi-Qiang(杨梓强), Qi Li-Mei(亓丽梅), Lan Feng(兰峰), Shi Zong-Jun(史宗君), Li Da-Zhi(李大治), and Liang Zheng(梁正). Chin. Phys. B, 2009, 18(6): 2452-2458.
[12] Comparative research on three types of coaxial slow wave structures
Xiao Ren-Zhen(肖仁珍), Liu Guo-Zhi(刘国治), and Chen Chang-Hua(陈昌华). Chin. Phys. B, 2008, 17(10): 3807-3811.
[13] Dielectric effect on the rf characteristics of a helical groove travelling wave tube
Wei Yan-Yu (魏彦玉), Wang Wen-Xiang (王文祥), Sun Jia-Hong (孙嘉鸿), Liu Sheng-Gang (刘盛纲), Baofu Jia, Gun-Sik Park. Chin. Phys. B, 2002, 11(3): 277-281.
No Suggested Reading articles found!