Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 079402    DOI: 10.1088/1674-1056/24/7/079402
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

A novel multi-pin rectangular waveguide slow-wave structure based backward wave amplifier at 340 GHz

Zhang Kai-Chun (张开春)a b, Qi Zhong-Kuo (漆中阔)a b, Yang Zhao-Long (杨召龙)a b
a THz Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b Cooperative Innovation Center of THz Science, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A backward wave amplifier (BWA) in a terahertz regime with a novel slow-wave structure (SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SWS possesses good performance and is compatible with micro-fabrication technologies. The dispersion and interaction impedance of the multi-pin SWS are presented. The stopbands of the modes cling together in a Brillouim zone. The SWS has a high interaction impedance that is suitable for the interaction of multi cylindrical beams. The design, which is based on three parallel pins supporting the wave–beam interaction with four cylindrical beams, is verified by three-dimensional particle-in-cell simulations. A BWA with the central frequency at 340 GHz is demonstrated, and the output power is more than 100 mW. A tuning frequency range of 15 GHz (333–348 GHz) is obtained with a gain of more than 20 dB.
Keywords:  backward wave amplifier (BWA)      multi-pin structure      slow-wave structure (SWS)      terahertz  
Received:  15 November 2014      Revised:  30 January 2015      Accepted manuscript online: 
PACS:  94.05.Pt (Wave/wave, wave/particle interactions)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  41.60.-m (Radiation by moving charges)  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB339801) and the National High Technology Research and Development Program of China (Grant No. G060104012AA8122007B).
Corresponding Authors:  Zhang Kai-Chun     E-mail:  zh.kch@163.com

Cite this article: 

Zhang Kai-Chun (张开春), Qi Zhong-Kuo (漆中阔), Yang Zhao-Long (杨召龙) A novel multi-pin rectangular waveguide slow-wave structure based backward wave amplifier at 340 GHz 2015 Chin. Phys. B 24 079402

[1] Paoloni C, Carlo A D, Brunetti F, Mineo M, Ulisse G, Durand A, Krozer V, Kotiranta M, Fiorello A M, Dispenza M, Secchi A, Zhurbenko V, Bouamrane F, Bouvet T, Megtert S, Tamburri E, Cojocaru C S and Gohier A 2011 Terahertz Sci. Technol. 4 149
[2] Mineo M and Paoloni C 2010 IEEE Trans. ED 57 3169
[3] Paoloni C, Carlo A D, Bouamrane F, Bouvet T, Durand A J, Kotiranta M, Krozer V, Megtert Stephan, Mineo M and Zhurbenko V 2013 IEEE Trans. ED 60 1236
[4] Mineo M and Paoloni C 2010 Electron. Lett. 46 927
[5] Kreischer K E, Tucek J C, Basten M A and Gallagher D A 2013 Vacuum Electronics Conference (IVEC), 2012 IEEE Thirteenth International, May 21-23, 2013 Paris, France, p. 1
[6] Zhang K C and Wu Z H 2013 Acta Phys. Sin. 62 024103 (in Chinese)
[7] Zhang K C, Wu Z H and Liu S G 2008 Chin. Phys. B 17 3402
[8] Tucek J C, Basten M A, Gallagher D A, Kreischer K E, Lai R, Radisic V, Leong K, Mihailovich R 2012 Vacuum Electronics Conference (IVEC), 2013 IEEE 14th International, April 24-26, 2012 Monterey CA, USA, p. 31
[9] Joye C D, Cook A M, Calame J P, Abe D K, Vlasov A N, Chernyavskiy I A, Nguyen K T, Wright E L, Pershing D E, Kimura T, Hyttinen M and Levush B 2014 IEEE Trans. ED 61 1672
[10] Li S, Wang J G, Tong C J, Wang G Q, Lu X C and Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese)
[11] Wang C, Lu B, Lin C X, Chen Q, Miao L, Deng X J and Zhang J 2014 IEEE Trans. Terahertz Sci. Technol. 4 75
[12] Liang W L, Wang Y M, Liu W, Li H Y and Wang J S 2014 Acta Phys. Sin. 63 057901 (in Chinese)
[13] Wang G Q, Wang J G, Li S, Wang X F, Lu X C and Song Z M 2015 Acta Phys. Sin. 64 50703 (in Chinese)
[14] Wang M, Wang J F, Wu Q Y and Huang Y X 2014 Acta Phys. Sin. 63 154101 (in Chinese)
[15] Tian W, Wen Q Y, Yang Q H, Jing Y L and Zhang H W 2015 Acta Phys. Sin. 64 028401 (in Chinese)
[16] Brian D M, Mark A B, John H B, Joe J and John E S 1994 IEEE Trans. MTT 42 995
[17] CST Studio Suit (Microwave Studio and Particle Studio), version 2011
[18] Mineo M and Paoloni C 2012 Micro. Opt. Tech. 54 837
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!