Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 108101    DOI: 10.1088/1674-1056/22/10/108101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Controllable synthesis, characterization, and growth mechanism of hollow ZnxCd1-xS spheres generated by a one-step thermal evaporation method

Yang Zai-Xing (杨再兴)a c, Zhong Wei (钟伟)a, Au Chak-Tong (區澤棠)b, Du You-Wei (都有为)a
a Nanjing National Laboratory of Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
b Chemistry Department, Hong Kong Baptist University, Hong Kong, China;
c Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
Abstract  Novel hollow ZnxCd1-xS spheres that are uniform in size are synthesized through the one-step thermal evaporation of a mixture of Zn and CdS powder. From an X-ray diffraction (XRD) study, the hexagonal wurtzite phase of ZnxCd1-xS is verified, and the Zn mole fraction (x) is determined to be 0.09. According to the experimental results, we propose a mechanism for the growth of Zn0.09Cd0.91S hollow spheres. The results of the cathodoluminescence investigation indicate uniform Zn, Cd, and S distribution of alloyed Zn0.09Cd0.91S, instead of separate CdS, ZnS, or nanocrystals of a core-shell structure. To the best of our knowledge, the fabrication of ZnxCd1-xS hollow spheres of this kind by one-step thermal evaporation has never been reported. This work would present a new method of growing and applying hollow spheres on Si substrates, and the discovery of the Zn0.09Cd0.91S hollow spheres would make the investigation of ZnxCd1-xS micro/nanostructures more interesting and intriguing.
Keywords:  ZnxCd1-xS      hollow spheres      semiconductors      vapour deposition      growth mechanism  
Received:  26 November 2012      Revised:  31 March 2013      Accepted manuscript online: 
PACS:  81.05.Dz (II-VI semiconductors)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.10.Bk (Growth from vapor)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174132), the National Key Project for Basic Research of China (Grant Nos. 2011CB922102 and 2012CB932304), and the Science Fund from the National Laboratory of Solid State Microstructures, Nanjing University, China (Grant No. 2010ZZ18).
Corresponding Authors:  Yang Zai-Xing     E-mail:  njumethods@163.com

Cite this article: 

Yang Zai-Xing (杨再兴), Zhong Wei (钟伟), Au Chak-Tong (區澤棠), Du You-Wei (都有为) Controllable synthesis, characterization, and growth mechanism of hollow ZnxCd1-xS spheres generated by a one-step thermal evaporation method 2013 Chin. Phys. B 22 108101

[1] Watt J, Young N, Haigh S, Kirkland A and Tilley R D 2009 Adv. Mater. 21 2288
[2] Gao H Y, Yan F W, Zhang Y, Li J M and Zeng Y P 2008 Chin. Phys. Lett. 25 640
[3] Ghoshal T, Biswas S, Nambissan P M G, Majumdar G and De S K 2009 Crystal Growth Des. 9 1287
[4] Ma K, Li H, Zhang H, Xu X L, Gong M G and Yang Z 2009 Chin. Phys. B 18 1942
[5] Lan C Y, Gong J F, Jiang Y W, Song Y and Yang S G 2012 Crystal Eng. Comm. 14 708
[6] Fan H B, Zheng X L, Wu S C, Liu Z G and Yao H B 2012 Chin. Phys. B 21 038101
[7] Yang Z X, Zhang P, Zhong W, Deng Y, Au C T and Du Y W 2012 Crystal Eng. Comm. 14 4298
[8] Chen J, Fan G H and Zhang Y Y 2013 Chin. Phys. B 22 018504
[9] Caruso F 2001 Adv. Mater. 13 11
[10] Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R and Weitz D A 2002 Science 298 1006
[11] Park S, Lim J H, Chung S W and Mirkin C A 2004 Science 303 348
[12] Xu L, Chen X, Wu Y, Chen C, Li W, Pan W and Wang Y 2006 Nanotechnology 17 1501
[13] Maji T K, Matsuda R and Kitagawa S 2007 Nat. Mater. 6 142
[14] Sander M S, Cote M J, Gu W, Kile B M and Tripp C P 2004 Adv. Mater. 16 2052
[15] Liu J and Xue D 2008 Adv. Mater. 20 2622
[16] Pang H C, Yang H B, Guo C X, Lu J L and Li C M 2012 Chem. Commun. 48 8832
[17] Schacht S, Huo Q, VoigtMartin I G, Stucky G D and Schuth F 1996 Science 273 768
[18] Fang X L, Liu Z H, Hsieh M F, Chen M, Liu P X, Chen C and Zheng N F 2012 ACS Nano 6 4434
[19] Sun Y G and Xia Y N 2002 Science 298 2176
[20] Wang X, Liao M Y, Zhong Y T, Zheng J Y, Tian W, Zhai T Y, Zhi C Y, Ma Y, Yao J N, Bando Y and Golberg D 2012 Adv. Mater. 24 3421
[21] Sun Y, Mayers B and Xia Y 2003 Adv. Mater. 15 641
[22] Zeng H C 2006 J. Mater. Chem. 16 649
[23] Liu B and Zeng H C 2004 J. Am. Chem. Soc. 126 8124
[24] Yu J, Yu H, Guo H, Li M and Mann S 2008 Small 4 87
[25] Ding S J, Zhang D Y, Wu H B, Zhang Z C and Lou X W 2012 Nanoscale 4 3651
[26] Liu M P, Li C H, Du H B and You X Z 2012 Chem. Commun. 48 4950
[27] Xiao Z L, Han C Y, Kwok W K, Wang H H, Welp U, Wang J and Crabtree G W 2004 J. Am. Chem. Soc. 126 2316
[28] Peng X 2010 Acc. Chem. Res. 43 1387
[29] Somers R C, Bawendi M G and Nocera D G 2007 Chem. Soc. Rev. 36 579
[30] Burda C, Chen X B, Narayanan R and El-Sayed M A 2005 Chem. Rev. 105 1025
[31] Panthani M G, Akhavan V, Goodfellow B, Schmidtke J P, Dunn L, Dodabalapur A, Barbara P F and Korgel B A 2008 J. Am. Chem. Soc. 130 16770
[32] Tessler N, Medvedev V, Kazes M, Kan S H and Banin U 2002 Science 295 1506
[33] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J, Sundaresan G, Wu A, Gambhir S S and Weiss S 2005 Science 307 538
[34] Zhong X, Han M, Dong Z, White T and Knoll W 2003 J. Am. Chem. Soc. 125 8589
[35] Wong B M, Léonard F, Li Q M and Wang G T 2011 Nano Lett. 11 3074
[36] Torimoto T, Ogawa S, Adachi T, Kameyama T, Okazaki K, Shibayama T, Kudo A and Kuwabata S 2010 Chem. Commun. 46 2082
[37] Nakamura H, Kato W, Uehara M, Nose K, Omata T, Matsuo O S, Miyazaki M and Maeda H 2006 Chem. Mater. 18 3330
[38] Zhou S M, Feng Y S and Zhang L D 2003 J. Crystal Growth 252 1
[39] Wang W Z, Zhu W and Xu H L 2008 J. Phys. Chem. C 112 16754
[40] DeGroot M W, Atkins K M, Borecki A, Rösner H and Corrigan J F 2008 J. Mater. Chem. 18 1123
[41] Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S and Lee S T 2005 Adv. Mater. 17 1372
[42] Zhai T Y, Gu Z J, Yang W S, Zhang X Z, Huang J, Zhao Y S, Yu D P, Fu H B, Ma Y and Yao J N 2006 Nanotechnology 17 4644
[43] Zhai T Y, Zhang X Z, Yang W S, Ma Y, Wang J F, Gu Z J, Yu D P, Yang H and Yao J N 2006 Chem. Phys. Lett. 427 371
[44] Li W J, Li D Z, Zhang W J, Hu Y, He Y H and Fu X Z 2010 J. Phys. Chem. C 114 2154
[45] Yang Z X, Zhong W, Deng Y, Au C T and Du Y W 2011 Crystal Growth Des. 11 2172
[46] Yang Z X, Zhong W, Zhang P, Xu M H, Au C T and Du Y W 2012 Crystal Eng. Comm. 14 585
[47] Yang Z X, Zhong W, Zhang P, Xu M H, Deng Y, Au C T and Du Y W 2012 Appl. Surf. Sci. 258 7343
[48] Hao Y F, Meng G W, Wang Z L, Ye C H and Zhang L 2006 Nano Lett. 6 1650
[49] Ballentyne D W G and Ray B 1961 Physica 27 337
[50] Denton A R and Ashchroft N W 1991 Phys. Rev. A 43 3161
[51] Shimaoka G and Suzuki Y 1997 Appl. Surf. Sci. 113 528
[52] Zhang Z L, Zheng G, Qu F Y and Wu X 2012 Chin. Phys. B. 21 098104
[53] Shen G Z and Lee C J 2005 Crystal Growth Des. 3 1085
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[3] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[4] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[5] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[6] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[7] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[8] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[9] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[10] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[11] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[12] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[13] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[14] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[15] First-principles study of the band gap tuning and doping control in CdSexTe1-x alloy for high efficiency solar cell
Jingxiu Yang(杨竞秀), Su-Huai Wei(魏苏淮). Chin. Phys. B, 2019, 28(8): 086106.
No Suggested Reading articles found!