INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Controllable synthesis, characterization, and growth mechanism of hollow ZnxCd1-xS spheres generated by a one-step thermal evaporation method |
Yang Zai-Xing (杨再兴)a c, Zhong Wei (钟伟)a, Au Chak-Tong (區澤棠)b, Du You-Wei (都有为)a |
a Nanjing National Laboratory of Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; b Chemistry Department, Hong Kong Baptist University, Hong Kong, China; c Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China |
|
|
Abstract Novel hollow ZnxCd1-xS spheres that are uniform in size are synthesized through the one-step thermal evaporation of a mixture of Zn and CdS powder. From an X-ray diffraction (XRD) study, the hexagonal wurtzite phase of ZnxCd1-xS is verified, and the Zn mole fraction (x) is determined to be 0.09. According to the experimental results, we propose a mechanism for the growth of Zn0.09Cd0.91S hollow spheres. The results of the cathodoluminescence investigation indicate uniform Zn, Cd, and S distribution of alloyed Zn0.09Cd0.91S, instead of separate CdS, ZnS, or nanocrystals of a core-shell structure. To the best of our knowledge, the fabrication of ZnxCd1-xS hollow spheres of this kind by one-step thermal evaporation has never been reported. This work would present a new method of growing and applying hollow spheres on Si substrates, and the discovery of the Zn0.09Cd0.91S hollow spheres would make the investigation of ZnxCd1-xS micro/nanostructures more interesting and intriguing.
|
Received: 26 November 2012
Revised: 31 March 2013
Accepted manuscript online:
|
PACS:
|
81.05.Dz
|
(II-VI semiconductors)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
81.10.Bk
|
(Growth from vapor)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174132), the National Key Project for Basic Research of China (Grant Nos. 2011CB922102 and 2012CB932304), and the Science Fund from the National Laboratory of Solid State Microstructures, Nanjing University, China (Grant No. 2010ZZ18). |
Corresponding Authors:
Yang Zai-Xing
E-mail: njumethods@163.com
|
Cite this article:
Yang Zai-Xing (杨再兴), Zhong Wei (钟伟), Au Chak-Tong (區澤棠), Du You-Wei (都有为) Controllable synthesis, characterization, and growth mechanism of hollow ZnxCd1-xS spheres generated by a one-step thermal evaporation method 2013 Chin. Phys. B 22 108101
|
[1] |
Watt J, Young N, Haigh S, Kirkland A and Tilley R D 2009 Adv. Mater. 21 2288
|
[2] |
Gao H Y, Yan F W, Zhang Y, Li J M and Zeng Y P 2008 Chin. Phys. Lett. 25 640
|
[3] |
Ghoshal T, Biswas S, Nambissan P M G, Majumdar G and De S K 2009 Crystal Growth Des. 9 1287
|
[4] |
Ma K, Li H, Zhang H, Xu X L, Gong M G and Yang Z 2009 Chin. Phys. B 18 1942
|
[5] |
Lan C Y, Gong J F, Jiang Y W, Song Y and Yang S G 2012 Crystal Eng. Comm. 14 708
|
[6] |
Fan H B, Zheng X L, Wu S C, Liu Z G and Yao H B 2012 Chin. Phys. B 21 038101
|
[7] |
Yang Z X, Zhang P, Zhong W, Deng Y, Au C T and Du Y W 2012 Crystal Eng. Comm. 14 4298
|
[8] |
Chen J, Fan G H and Zhang Y Y 2013 Chin. Phys. B 22 018504
|
[9] |
Caruso F 2001 Adv. Mater. 13 11
|
[10] |
Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R and Weitz D A 2002 Science 298 1006
|
[11] |
Park S, Lim J H, Chung S W and Mirkin C A 2004 Science 303 348
|
[12] |
Xu L, Chen X, Wu Y, Chen C, Li W, Pan W and Wang Y 2006 Nanotechnology 17 1501
|
[13] |
Maji T K, Matsuda R and Kitagawa S 2007 Nat. Mater. 6 142
|
[14] |
Sander M S, Cote M J, Gu W, Kile B M and Tripp C P 2004 Adv. Mater. 16 2052
|
[15] |
Liu J and Xue D 2008 Adv. Mater. 20 2622
|
[16] |
Pang H C, Yang H B, Guo C X, Lu J L and Li C M 2012 Chem. Commun. 48 8832
|
[17] |
Schacht S, Huo Q, VoigtMartin I G, Stucky G D and Schuth F 1996 Science 273 768
|
[18] |
Fang X L, Liu Z H, Hsieh M F, Chen M, Liu P X, Chen C and Zheng N F 2012 ACS Nano 6 4434
|
[19] |
Sun Y G and Xia Y N 2002 Science 298 2176
|
[20] |
Wang X, Liao M Y, Zhong Y T, Zheng J Y, Tian W, Zhai T Y, Zhi C Y, Ma Y, Yao J N, Bando Y and Golberg D 2012 Adv. Mater. 24 3421
|
[21] |
Sun Y, Mayers B and Xia Y 2003 Adv. Mater. 15 641
|
[22] |
Zeng H C 2006 J. Mater. Chem. 16 649
|
[23] |
Liu B and Zeng H C 2004 J. Am. Chem. Soc. 126 8124
|
[24] |
Yu J, Yu H, Guo H, Li M and Mann S 2008 Small 4 87
|
[25] |
Ding S J, Zhang D Y, Wu H B, Zhang Z C and Lou X W 2012 Nanoscale 4 3651
|
[26] |
Liu M P, Li C H, Du H B and You X Z 2012 Chem. Commun. 48 4950
|
[27] |
Xiao Z L, Han C Y, Kwok W K, Wang H H, Welp U, Wang J and Crabtree G W 2004 J. Am. Chem. Soc. 126 2316
|
[28] |
Peng X 2010 Acc. Chem. Res. 43 1387
|
[29] |
Somers R C, Bawendi M G and Nocera D G 2007 Chem. Soc. Rev. 36 579
|
[30] |
Burda C, Chen X B, Narayanan R and El-Sayed M A 2005 Chem. Rev. 105 1025
|
[31] |
Panthani M G, Akhavan V, Goodfellow B, Schmidtke J P, Dunn L, Dodabalapur A, Barbara P F and Korgel B A 2008 J. Am. Chem. Soc. 130 16770
|
[32] |
Tessler N, Medvedev V, Kazes M, Kan S H and Banin U 2002 Science 295 1506
|
[33] |
Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J, Sundaresan G, Wu A, Gambhir S S and Weiss S 2005 Science 307 538
|
[34] |
Zhong X, Han M, Dong Z, White T and Knoll W 2003 J. Am. Chem. Soc. 125 8589
|
[35] |
Wong B M, Léonard F, Li Q M and Wang G T 2011 Nano Lett. 11 3074
|
[36] |
Torimoto T, Ogawa S, Adachi T, Kameyama T, Okazaki K, Shibayama T, Kudo A and Kuwabata S 2010 Chem. Commun. 46 2082
|
[37] |
Nakamura H, Kato W, Uehara M, Nose K, Omata T, Matsuo O S, Miyazaki M and Maeda H 2006 Chem. Mater. 18 3330
|
[38] |
Zhou S M, Feng Y S and Zhang L D 2003 J. Crystal Growth 252 1
|
[39] |
Wang W Z, Zhu W and Xu H L 2008 J. Phys. Chem. C 112 16754
|
[40] |
DeGroot M W, Atkins K M, Borecki A, Rösner H and Corrigan J F 2008 J. Mater. Chem. 18 1123
|
[41] |
Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S and Lee S T 2005 Adv. Mater. 17 1372
|
[42] |
Zhai T Y, Gu Z J, Yang W S, Zhang X Z, Huang J, Zhao Y S, Yu D P, Fu H B, Ma Y and Yao J N 2006 Nanotechnology 17 4644
|
[43] |
Zhai T Y, Zhang X Z, Yang W S, Ma Y, Wang J F, Gu Z J, Yu D P, Yang H and Yao J N 2006 Chem. Phys. Lett. 427 371
|
[44] |
Li W J, Li D Z, Zhang W J, Hu Y, He Y H and Fu X Z 2010 J. Phys. Chem. C 114 2154
|
[45] |
Yang Z X, Zhong W, Deng Y, Au C T and Du Y W 2011 Crystal Growth Des. 11 2172
|
[46] |
Yang Z X, Zhong W, Zhang P, Xu M H, Au C T and Du Y W 2012 Crystal Eng. Comm. 14 585
|
[47] |
Yang Z X, Zhong W, Zhang P, Xu M H, Deng Y, Au C T and Du Y W 2012 Appl. Surf. Sci. 258 7343
|
[48] |
Hao Y F, Meng G W, Wang Z L, Ye C H and Zhang L 2006 Nano Lett. 6 1650
|
[49] |
Ballentyne D W G and Ray B 1961 Physica 27 337
|
[50] |
Denton A R and Ashchroft N W 1991 Phys. Rev. A 43 3161
|
[51] |
Shimaoka G and Suzuki Y 1997 Appl. Surf. Sci. 113 528
|
[52] |
Zhang Z L, Zheng G, Qu F Y and Wu X 2012 Chin. Phys. B. 21 098104
|
[53] |
Shen G Z and Lee C J 2005 Crystal Growth Des. 3 1085
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|