Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 106401    DOI: 10.1088/1674-1056/22/10/106401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermodynamic properties of 3C–SiC

B. Y. Thakorea, S. G. Khambholjab, A. Y. Vahoraa, N. K. Bhatta, A. R. Jania
a Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India;
b Indus University, Ahmedabad 380001, Gujarat, India
Abstract  In the present paper, we report on the results of various thermodynamic properties of 3C–SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density functional theory as implemented in Quantum ESPRESSO code for calculating various cohesive properties in ambient condition. Further, ionic motion at a finite temperature is taken into account using the quasiharmonic Debye model. The calculated thermodynamic properties, phonon dispersion curves, and phonon densities of states at different temperatures and structural phase transitions at high pressures are found to be in good agreement with experimental and other theoretical results.
Keywords:  phase transition      phonon dispersion curve      Debye model      thermodynamic property  
Received:  08 March 2013      Revised:  12 April 2013      Accepted manuscript online: 
PACS:  64.60.-i (General studies of phase transitions)  
  65.40.De (Thermal expansion; thermomechanical effects)  
  65.40.Ba (Heat capacity)  
  65.40.G- (Other thermodynamical quantities)  
Corresponding Authors:  B. Y. Thakore     E-mail:  brijmohanthakore@rediffmail.com

Cite this article: 

B. Y. Thakore, S. G. Khambholja, A. Y. Vahora, N. K. Bhatt, A. R. Jani Thermodynamic properties of 3C–SiC 2013 Chin. Phys. B 22 106401

[1] Hao A, Yang X, Wang X, Zhu Y, Liu X and Liu R 2009 Chin. Phys. B 18 4474
[3] Wang Y H, Zhang Y M, Zhang Y M, Zhang L, Jia R X and Chen D 2010 Chin. Phys. B 19 036803
[4] Ping C, Zhang Y M, Zhang Y M and Hui G 2010 Chin. Phys. B 19 097802
[5] Yang Y T, Han R and Wang P 2008 Chin. Phys. B 17 3459
[6] Boulle A, Aube J, Galben-Sandulache I G and Chaussende D 2009 Appl. Phys. Lett. 94 201904
[7] Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S and Petti D A 2007 J. Nucl. Mater. 371 329
[8] Ivashchenko V I, Turchi P E A and Shevchenko V I 2009 Phys. Rev. B 75 085209
[9] Serrano J, Strempfer J, Cardona M, Böhning M S, Requardt H, Lorenzen M, Stojetz B, Pavone P and Choyke W J 2002 Appl. Phys. Lett. 80 4360
[10] Yoshida M, Onodera A, Ueno M, Takemura K and Shimomura O 1993 Phys. Rev. B 48 10587
[11] Li Z and Bradt R C 1986 J. Mater. Sci. 21 4366
[12] Varadachari C and Bhowmick R 2009 Modelling Simul. Mater. Sci. Eng. 17 075006
[13] Xiao H Y, Gao F, Zu X T and Weber W J 2008 Appl. Phys. Lett. 92 241909
[15] Vashishtha P, Kalia R K, Nakano A and Rino J P 2007 J. Appl. Phys. 101 103515
[16] Erhart P and Albe K 2005 Phys. Rev. B 71 035211
[17] Durandurdu M 2002 Phys. Rev. B 66 125201
[19] Shimojo F, Ebbsjo I, Kalia R K, Nakano A, Rino J P and Vashishta P 2000 Phys. Rev. Lett. 84 3338
[20] Karch K, Bechstedt F, Pavone P and Strauch D 1996 J. Phys.: Condens. Matter 8 2945
[21] Karch K, Bechtedt F, Pavone P and Strauch D 1996 Phys. Rev. B 53 13400
[22] Talwar D N and Sherbondy J C 1995 Appl. Phys. Lett. 67 3301
[23] Hofmann M, Zywietz A, Karch K and Bechstedt F 1994 Phys. Rev. B 50 13401
[24] Karch K, Pavone P, Windl W, Schutt O and Strauch D 1994 Phys. Rev. B 50 17054
[25] Karch K, Pavone P, Windl W, Strauch D and Bechstedt F 1995 Int. J. Quantum Chem. 56 801
[26] Zhou S 2006 Phys. Rev. E 74 031119
[27] Zhou S 2009 J. Chem. Phys. 130 054103
[28] Zhou S 2011 J. Stat. Mech. P09001
[29] Zhou S 1954 J. Chem. Phys. 22 1420
[31] Blanco M A, Franscisco E and Luana V 1992 Phys. Rev. B 45 13244
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Auciello O, Birrell J, Carlisle J A, Gerbi J E, Xiao X, Peng B and Espinosa H B 2004 J. Phys.: Condens. Matter 16 R539
[36] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[37] Chang K J and Cohen M L 1987 Phys. Rev. B 35 8196
[38] Franke P and Neuschütz D (eds.), 1995 Phys. Rev. B 52 15150
[40] Sivasubramanian K, Raju S and Monadas E 2001 J. Eur. Ceram. Soc. 21 1229
[41] Gurvich V L and Veyts I V 1972 Thermodynamic Properties of Individual Substances (New York: Hemisphere Publishing Corporation)
[42] http://www.ioffe.ru/SVA/NSM/(Ioffe Institute, 2003)
[43] Feldman D W, Parker J H, Choyke W J and Patrick L 1968 Phys. Rev. 173 787
[44] Carnahan R D 1968 J. Am. Ceram. Soc. 51 223
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!