CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Thermodynamic properties of 3C–SiC |
B. Y. Thakorea, S. G. Khambholjab, A. Y. Vahoraa, N. K. Bhatta, A. R. Jania |
a Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India;
b Indus University, Ahmedabad 380001, Gujarat, India |
|
|
Abstract In the present paper, we report on the results of various thermodynamic properties of 3C–SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density functional theory as implemented in Quantum ESPRESSO code for calculating various cohesive properties in ambient condition. Further, ionic motion at a finite temperature is taken into account using the quasiharmonic Debye model. The calculated thermodynamic properties, phonon dispersion curves, and phonon densities of states at different temperatures and structural phase transitions at high pressures are found to be in good agreement with experimental and other theoretical results.
|
Received: 08 March 2013
Revised: 12 April 2013
Accepted manuscript online:
|
PACS:
|
64.60.-i
|
(General studies of phase transitions)
|
|
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
65.40.Ba
|
(Heat capacity)
|
|
65.40.G-
|
(Other thermodynamical quantities)
|
|
Corresponding Authors:
B. Y. Thakore
E-mail: brijmohanthakore@rediffmail.com
|
Cite this article:
B. Y. Thakore, S. G. Khambholja, A. Y. Vahora, N. K. Bhatt, A. R. Jani Thermodynamic properties of 3C–SiC 2013 Chin. Phys. B 22 106401
|
[1] |
Hao A, Yang X, Wang X, Zhu Y, Liu X and Liu R 2009 Chin. Phys. B 18 4474
|
[3] |
Wang Y H, Zhang Y M, Zhang Y M, Zhang L, Jia R X and Chen D 2010 Chin. Phys. B 19 036803
|
[4] |
Ping C, Zhang Y M, Zhang Y M and Hui G 2010 Chin. Phys. B 19 097802
|
[5] |
Yang Y T, Han R and Wang P 2008 Chin. Phys. B 17 3459
|
[6] |
Boulle A, Aube J, Galben-Sandulache I G and Chaussende D 2009 Appl. Phys. Lett. 94 201904
|
[7] |
Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S and Petti D A 2007 J. Nucl. Mater. 371 329
|
[8] |
Ivashchenko V I, Turchi P E A and Shevchenko V I 2009 Phys. Rev. B 75 085209
|
[9] |
Serrano J, Strempfer J, Cardona M, Böhning M S, Requardt H, Lorenzen M, Stojetz B, Pavone P and Choyke W J 2002 Appl. Phys. Lett. 80 4360
|
[10] |
Yoshida M, Onodera A, Ueno M, Takemura K and Shimomura O 1993 Phys. Rev. B 48 10587
|
[11] |
Li Z and Bradt R C 1986 J. Mater. Sci. 21 4366
|
[12] |
Varadachari C and Bhowmick R 2009 Modelling Simul. Mater. Sci. Eng. 17 075006
|
[13] |
Xiao H Y, Gao F, Zu X T and Weber W J 2008 Appl. Phys. Lett. 92 241909
|
[15] |
Vashishtha P, Kalia R K, Nakano A and Rino J P 2007 J. Appl. Phys. 101 103515
|
[16] |
Erhart P and Albe K 2005 Phys. Rev. B 71 035211
|
[17] |
Durandurdu M 2002 Phys. Rev. B 66 125201
|
[19] |
Shimojo F, Ebbsjo I, Kalia R K, Nakano A, Rino J P and Vashishta P 2000 Phys. Rev. Lett. 84 3338
|
[20] |
Karch K, Bechstedt F, Pavone P and Strauch D 1996 J. Phys.: Condens. Matter 8 2945
|
[21] |
Karch K, Bechtedt F, Pavone P and Strauch D 1996 Phys. Rev. B 53 13400
|
[22] |
Talwar D N and Sherbondy J C 1995 Appl. Phys. Lett. 67 3301
|
[23] |
Hofmann M, Zywietz A, Karch K and Bechstedt F 1994 Phys. Rev. B 50 13401
|
[24] |
Karch K, Pavone P, Windl W, Schutt O and Strauch D 1994 Phys. Rev. B 50 17054
|
[25] |
Karch K, Pavone P, Windl W, Strauch D and Bechstedt F 1995 Int. J. Quantum Chem. 56 801
|
[26] |
Zhou S 2006 Phys. Rev. E 74 031119
|
[27] |
Zhou S 2009 J. Chem. Phys. 130 054103
|
[28] |
Zhou S 2011 J. Stat. Mech. P09001
|
[29] |
Zhou S 1954 J. Chem. Phys. 22 1420
|
[31] |
Blanco M A, Franscisco E and Luana V 1992 Phys. Rev. B 45 13244
|
[34] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[35] |
Auciello O, Birrell J, Carlisle J A, Gerbi J E, Xiao X, Peng B and Espinosa H B 2004 J. Phys.: Condens. Matter 16 R539
|
[36] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[37] |
Chang K J and Cohen M L 1987 Phys. Rev. B 35 8196
|
[38] |
Franke P and Neuschütz D (eds.), 1995 Phys. Rev. B 52 15150
|
[40] |
Sivasubramanian K, Raju S and Monadas E 2001 J. Eur. Ceram. Soc. 21 1229
|
[41] |
Gurvich V L and Veyts I V 1972 Thermodynamic Properties of Individual Substances (New York: Hemisphere Publishing Corporation)
|
[42] |
http://www.ioffe.ru/SVA/NSM/(Ioffe Institute, 2003)
|
[43] |
Feldman D W, Parker J H, Choyke W J and Patrick L 1968 Phys. Rev. 173 787
|
[44] |
Carnahan R D 1968 J. Am. Ceram. Soc. 51 223
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|