Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 105101    DOI: 10.1088/1674-1056/22/10/105101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The mechanism of hydrogen plasma passivation for poly-crystalline silicon thin film

Li Juan (李娟)a, Luo Chong (罗翀)a, Meng Zhi-Guo (孟志国)a, Xiong Shao-Zhen (熊绍珍)a, Hoi Sing Kwok (郭海威)b
a Institute of Photo-Electronics, Tianjin Key Laboratory for Photo-Electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China;
b Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Abstract  The mechanism of hydrogen plasma passivation for poly-crystalline silicon (poly-Si) thin films is investigated by optical emission spectroscopy (OES) combined with Hall mobility, Raman spectra, absorption coefficient spectra, and so on. It is found that different kinds of hydrogen plasma radicals are responsible for passivating different defects in poly-Si. The Hα with lower energy is mainly responsible for passivating the solid phase crystallization (SPC) poly-Si whose crystallization precursor is deposited by plasma-enhanced chemical vapor deposition (PECVD). The H* with higher energy may passivate the defects related to teh Ni impurity around the grain boundaries more effectively. In addition, Hβ and Hγ with the highest energy are required to passivate intra-grain defects in the poly-Si crystallized by SPC but whose precursor is deposited by low pressure chemical vapor deposition (LPCVD).
Keywords:  hydrogen plasma      passivation      poly-Si      mechanism  
Received:  10 December 2012      Revised:  14 April 2013      Accepted manuscript online: 
PACS:  51.50.+v (Electrical properties)  
  52.25.-b (Plasma properties)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61076006) and the Flat-Panel Display Special Project of China’s 863 Plan (Grant No. 2008AA03A335).
Corresponding Authors:  Li Juan     E-mail:  lj1018@nankai.edu.cn

Cite this article: 

Li Juan (李娟), Luo Chong (罗翀), Meng Zhi-Guo (孟志国), Xiong Shao-Zhen (熊绍珍), Hoi Sing Kwok (郭海威) The mechanism of hydrogen plasma passivation for poly-crystalline silicon thin film 2013 Chin. Phys. B 22 105101

[1] Gang L and Stephen J F 1993 Appl. Phys. Lett. 62 2554
[2] Oliver N, Tom P, Linda M K, Alistair B S and Stuart R W 1998 Appl. Phys. Lett. 73 3214
[3] Meng Z G, Li Y, Wu C Y, Zhao S Y, Li J, Man W, Kwok H S and Xiong S Z 2008 Chin. Phys. B 22 046101
[4] Wu C Y, Li X D, Zhao S Y, Li J, Meng Z G and Xiong S Z 2009 Chin. Phys. B 18 1237
[5] Benton J L, Doherty C J, Ferris S D, Flamm D L, Kimerling L C and Leamy H J 1980 Appl. Phys. Lett. 36 670
[6] Ostapenko S, Jastrzebski L, Lagowski J and Smeltzer R K 1996 Appl. Phys. Lett. 68 2873
[7] Cielaszyk E S, Kirmse K H R, Stewart R A and Wendt A E 1995 Appl. Phys. Lett. 67 3099
[8] Estreicher S K 1995 Mater. Sci. Eng. R14 319
[9] Nickel N H, Johnson N M and Jackson W B 1993 Appl. Phys. Lett. 62 3285
[10] Darwichea S, Nikravecha M, Morvan D, Amourouxa J and Ballutaud D 2007 Solar Energy Materials & Solar Cells 91 195
[11] Warren B J, Johnson N M and Biegelsen D K 1983 Appl. Phys. Lett. 43 195
[12] Kamiya T, Kishi M, Ushirokawa A and Katoda T 1981 Appl. Phys. Lett. 38 377
[13] Pankove J I, Lampert M A and Tarng M L 1978 Appl. Phys. Lett. 32 439
[14] Dubè C and Hanoka J I 1984 Appl. Phys. Lett. 45 1135
[15] Soo Y Y, Jae Y O, Chae O K and Jang J 1998 J. Appl. Phys. 84 6463
[16] Cielaszyk E S, Kirmse K H R, Stewart A and Wendt A E 1995 Appl. Phys. Lett. 67 3099
[17] Tarasov I, Ostapenko S, Nakayashiki K and Rohatgi A 2004 Appl. Phys. Lett. 85 4346
[1] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[2] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[3] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[4] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[5] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[6] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[7] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[8] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[9] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[10] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[11] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[12] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[13] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[14] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[15] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
No Suggested Reading articles found!