CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Composition and misfit strain dependence of electrocaloric effect of Pb1-xSrxTiO3 thin films |
Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴) |
Center for low-dimensional materials, micro-nano devices and system, Changzhou University, Changzhou 213164, China |
|
|
Abstract A Landau-Devonshire thermodynamic theory is employed to investigate the effects of composition and misfit strain on the room-temperature electrocaloric effect of epitaxial Pb1-xSrxTiO3 thin films. The “temperature-misfit strain” phase diagrams with the Sr composition x of 0.1, 0.3, and 0.5 are constructed. The introduction of Sr composition reduces the Curie temperature greatly, and enhances the electrocaloric effect. Moreover, the electrocaloric effect largely depends on the misfit strain. Therefore, the Sr composition and the misfit strain can be controlled to obtain the giant room-temperature electrocaloric effect.
|
Received: 26 April 2012
Revised: 01 June 2012
Accepted manuscript online:
|
PACS:
|
77.22.Ej
|
(Polarization and depolarization)
|
|
77.70.+a
|
(Pyroelectric and electrocaloric effects)
|
|
77.80.Bh
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904053), the Natural Science Foundation for Colleges and Universities of Jiangsu Province, China (Grant No. 09KJB140002), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and Qing Lan Project. |
Corresponding Authors:
Ding Jian-Ning
E-mail: dingjn@cczu.edu.cn
|
Cite this article:
Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴) Composition and misfit strain dependence of electrocaloric effect of Pb1-xSrxTiO3 thin films 2013 Chin. Phys. B 22 017701
|
[1] |
Olsen R B, Butler W F, Payne D A, Tuttle B A and Held P C 1980 Phys. Rev. Lett. 45 1436
|
[2] |
Lawless W N 1977 Phys. Rev. B 16 433
|
[3] |
Lombardo G and Pohl R O 1965 Phys. Rev. Lett. 15 291
|
[4] |
Tuttle B A and Payne D A 1981 Ferroelectrics 37 603
|
[5] |
Mischenko A S, Zhang Q, Scott J F, Whatmore R W and Mathur N D 2006 Science 311 1270
|
[6] |
Qiu J H and Jiang Q 2008 J. Appl. Phys. 103 084105
|
[7] |
Li B, Wang J B, Zhong X L, Wang F and Zhou Y C 2010 J. Appl. Phys. 107 014109
|
[8] |
Karthik J and Martin L W 2011 Appl. Phys. Lett. 99 032904
|
[9] |
Akcay G, Alpay S P, Mantese J V and Rossetti G A 2007 Appl. Phys. Lett. 90 252909
|
[10] |
Bai Y, Zheng G P and Shi S Q 2010 Appl. Phys. Lett. 96 192902
|
[11] |
Akcay G, Alpay S P, Rossetti G A and Scott J F 2008 J. Appl. Phys. 103 024104
|
[12] |
Cao H X and Li Z Y 2009 J. Appl. Phys. 106 094104
|
[13] |
Zhang X, Wang J B, Li B, Zhong X L, Lou X J and Zhou Y C 2011 J. Appl. Phys. 109 126102
|
[14] |
Mischenko A S, Zhang Q, Whatmore R W, Scott J F and Mathur N D 2006 Appl. Phys. Lett. 89 242912
|
[15] |
Correia T M, Young J S, Whatmore R W, Scott J F, Mathur N D and Zhang Q 2009 Appl. Phys. Lett. 95 182904
|
[16] |
Sebald G, Seveyrat L, Guyomar D, Lebrun L, Guiffard B and Pruvost S 2006 J. Appl. Phys. 100 124112
|
[17] |
Perantie J, Hagberg J, Unsimaki A and Jantunen H 2010 Phys. Rev. B 82 134119
|
[18] |
Neese B, Chu B J, Lu S G, Wang Y, Furman E and Zhang Q M 2008 Science 321 821
|
[19] |
Lu S G, Rocheckziheckc B, Zhang Q M, Kutnjak Z and Neese B 2011 Appl. Phys. Lett. 98 122906
|
[20] |
Liu S W, Lin Y, Weaver J, Donner W, Chen X, Chen C L, Jiang J C, Meletis E I and Bhalla A 2004 Appl. Phys. Lett. 85 3202
|
[21] |
Liu S W, Weaver J, Yuan Z, Donner W, Chen C L, Jiang J C, Meletis E I, Chang W, Kirchoefer S W, Horwitz J and Bhalla A 2005 Appl. Phys. Lett. 87 142905
|
[22] |
Li X T, Du P Y, Mak C L and Wong K H 2007 Appl. Phys. Lett. 90 262906
|
[23] |
Jiang Y P, Tang X G, Liu Q X, Zhou Y C and Chan-Wong L H 2008 Chin. Phys. Lett. 25 3044
|
[24] |
Normura S and Sawada S 1955 J. Phys. Soc. Jpn. 10 108
|
[25] |
Rispens G, Heuver J A and Noheda B 2010 Appl. Phys. Lett. 97 262901
|
[26] |
Qiu J H and Jiang Q 2009 Eur. Phys. J. B 71 15
|
[27] |
Qiu J H, Ding J N, Yuan N Y, Wang X Q and Yang J 2011 Eur. Phys. J. B 84 25
|
[28] |
Pertsev N A, Zembilgotov A G and Tagantsev A K 1998 Phys. Rev. Lett. 80 1988
|
[29] |
Qiu J H, Ding J N, Yuan N Y, Wang X Q and Yang J 2011 Solid State Commun. 152 856
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|