CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electric current-induced giant electroresistance in La0.36Pr0.265Ca0.375MnO3 thin films |
Yinghui Sun(孙颖慧)1, Yonggang Zhao(赵永刚)2,3, Rongming Wang(王荣明)1 |
1 Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China |
|
|
Abstract The electroresistance (ER) of La0.36Pr0.265Ca0.375MnO3 (LPCMO) epitaxial thin film was studied under various dc currents. The current effect was compared for the unpatterned film and patterned microbridge with a width of 50 μm. The value of ER in the unpatterned LPCMO film could reach 0.54 under a 1-mA current, which is much higher than ER under 1 mA for the patterned weak phase-separated La0.67Ca0.33MnO3 and La0.85Sr0.15MnO3 microbridges with 50-μm width. More interestingly, for the patterned LPCMO microbridge, the maximum of ER can reach 0.6 under a small current of 100 μA. The results were explained by considering the coexistence of ferromagnetic metallic phase with the charge-ordered phase, and the variation of the phase separation with electric current.
|
Received: 27 December 2016
Revised: 22 January 2017
Accepted manuscript online:
|
PACS:
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
64.75.St
|
(Phase separation and segregation in thin films)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604010), the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-15-097A1), and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF201611). |
Corresponding Authors:
Rongming Wang
E-mail: rmwang@ustb.edu.cn
|
Cite this article:
Yinghui Sun(孙颖慧), Yonggang Zhao(赵永刚), Rongming Wang(王荣明) Electric current-induced giant electroresistance in La0.36Pr0.265Ca0.375MnO3 thin films 2017 Chin. Phys. B 26 047103
|
[1] |
Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
|
[2] |
Prellier W, Lecoeur P and Mercey B 2001 J. Phys.: Condens. Matter 13 R915
|
[3] |
Dagotto E 2005 Science 309 257
|
[4] |
Tokura Y, Kuwahara H, Moritomo Y, Tomioka Y and Asamitsu A 1996 Phys. Rev. Lett. 76 3184
|
[5] |
Moritomo Y, Kuwahara H, Tomioka Y and Tokura Y 1997 Phys. Rev. B 55 7549
|
[6] |
Miyano K, Tanaka T, Tomioka Y and Tokura Y 1997 Phys. Rev. Lett. 78 4257
|
[7] |
Kiryukhin V, Casa D, Hill J P, Keimer B, Vigliante A, Tomioka Y and Tokura Y 1997 Nature 386 813
|
[8] |
Lee H J, Kim K H, Kim M W, Noh T W, Kim B G, Koo T Y, Cheong S W, Wang Y J and Wei X 2002 Phys. Rev. B 65 115118
|
[9] |
Chaudhuri S, Pandey N K, Saini S and Budhani R C 2010 J. Phys.: Condens. Matter 22 275502
|
[10] |
Cui Y M, Liu W and Wang R M 2013 Phys. Chem. Chem. Phys. 15 6804
|
[11] |
Rao C N R, Raju A R, Ponnambalam V, Parashar S and Kumar N 2000 Phys. Rev. B 61 594
|
[12] |
Srivastava S, Pandey N K, Padhan P and Budhani R C 2000 Phys. Rev. B 62 13868
|
[13] |
Markovich V, Rozenberg E, Yuzhelevski Y, Jung G, Gorodetsky G, Shulyatev D A and Mukovskii Y M 2001 Appl. Phys. Lett. 78 3499
|
[14] |
Gao J, Shen S Q, Li T K and Sun J R 2003 Appl. Phys. Lett. 82 4732
|
[15] |
Debnath A K and Lin J G 2003 Phys. Rev. B 67 064412
|
[16] |
Ma Y Q, Song W H, Dai J M, Zhang R L, Yang J, Zhao B C, Sheng Z G, Lu W J, Du J J and Sun Y P 2004 Phys. Rev. B 70 054413
|
[17] |
Zhao Y G, Wang Y H, Zhang G M, Zhang B, Zhang X P, Yang C X, Lang P L, Zhu M H and Guan P C 2005 Appl. Phys. Lett. 86 122502
|
[18] |
Wu T, Ogale S B, Garrison J E, Nagaraj B, Biswas A, Chen Z, Greene R L, Ramesh R, Venkatesan T and Millis A J 2001 Phys. Rev. Lett. 86 5998
|
[19] |
Sun J R, Liu G J, Zhang S Y, Zhang H W, Han X F and Shen B G 2005 Appl. Phys. Lett. 86 242507
|
[20] |
Zhai Z Y, Xie Q Y, Chen G B, Wu X S and Gao J 2016 Chin. Phys. Lett. 33 056103
|
[21] |
Asamitsu A, Tomioka Y, Kuwahara H and Tokura Y 1997 Nature 388 50
|
[22] |
Parashar S, Ebenso E E, Raju A R and Rao C N R 2000 Solid State Commun. 114 295
|
[23] |
Stankiewicz J, Sese J, Garcia J, Blasco J and Rillo C 2000 Phys. Rev. B 61 11236
|
[24] |
Pandey N K, Lobo R and Budhani R C 2003 Phys. Rev. B 67 054413
|
[25] |
Hu F X and Gao J 2004 Phys. Rev. B 69 212413
|
[26] |
Zhang X L, Zhao Y G, Sun Y H, Gao S N, Lang P L, Zhang X P and Zhu M H 2006 J. Magn. Magn. Mater. 306 55
|
[27] |
Sun Y H, Zhao Y G, Zhang X L, Gao S N, Lang P L, Zhang X P and Zhu M H 2007 J. Magn. Magn. Mater. 311 644
|
[28] |
Sun Y H, Zhao Y G, Tian H F, Xiong C M, Xie B T, Zhu M H, Park S, Wu W and Li J Q 2008 Phys. Rev. B 78 024412
|
[29] |
Sun Y H, Zhao Y G, Zhu M H, Xie B T and Wu W B 2012 J. Appl. Phys. 112 023908
|
[30] |
Babushkina N A, Belova L M, Khomskii D I, Kugel K I, Gorbenko O Y and Kaul A R 1999 Phys. Rev. B 59 6994
|
[31] |
Jeen H and Biswas A 2013 Phys. Rev. B 88 024415
|
[32] |
Cui L M, Li J, Wang J, Zhang Y and Zheng D N 2014 Chin. Phys. B 23 097103
|
[33] |
Wang J F, Zhou Y, Cao D, Yu S J, Jiao Z W and Gao J 2015 J. Phys. D: Appl. Phys. 48 175302
|
[34] |
Wang J F, Cao D, Zhou Y, Wang X Y, Chen M G and Gao J 2015 J. Alloys Compd. 649 819
|
[35] |
Wei W G, Zhu Y Y, Bai Y, et al. 2016 Phys. Rev. B 93 035111
|
[36] |
Liu Y B, Sun J R and Shen B G 2013 J. Appl. Phys. 114 193704
|
[37] |
Shen J, Ward T Z and Yin L F 2013 Chin. Phys. B 22 017501
|
[38] |
Uehara M, Mori S, Chen C H and Cheong S W 1999 Nature 399 560
|
[39] |
Kiryukhin V, Kim B G, Podzorov V, Cheong S W, Koo T Y, Hill J P, Moon I and Jeong Y H 2001 Phys. Rev. B 63 024420
|
[40] |
Ward T Z, Liang S, Fuchigami K, Yin L F, Dagotto E, Plummer E W and Shen J 2008 Phys. Rev. Lett. 100 247204
|
[41] |
Wu T, Ogale S B, Shinde S R, Biswas A, Polletto T, Greene R L, Venkatesan T and Millis A J 2003 J. Appl. Phys. 93 5507
|
[42] |
Jeen H and Biswas A 2011 Phys. Rev. B 83 064408
|
[43] |
Jin S, Tiefel T H, McCormack M, O'Bryan H M, Chen L H, Ramesh R and Schurig D 1995 Appl. Phys. Lett. 67 557
|
[44] |
Zhai H Y, Ma J X, Gillaspie D T, Zhang X G, Ward T Z, Plummer E W and Shen J 2006 Phys. Rev. Lett. 97 167201
|
[45] |
Singh-Bhalla G, Selcuk S, Dhakal T, Biswas A and Hebard A F 2009 Phys. Rev. Lett. 102 077205
|
[46] |
Lavrov A N, Tsukada I and Ando Y 2003 Phys. Rev. B 68 094506
|
[47] |
Hwang H Y, Cheong S W, Radaelli P G, Marezio M and Batlogg B 1995 Phys. Rev. Lett. 75 914
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|