Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 015201    DOI: 10.1088/1674-1056/22/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Design and realization of magnetic-type absorber with broadened operating frequency band

Zhou Yong-Jiang (周永江), Pang Yong-Qiang (庞永强), Cheng Hai-Feng (程海峰)
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace and Materials Engineering,National University of Defense Technology, Changsha 410073, China
Abstract  In this paper, we present an efficient method to obtain absorbers with broadened operating frequency bands. They are accomplished by using the conventional magnetic absorbing materials (MAMs) in the forms of array and mesh structures, which are similar to those in the case of frequency slective surface. The proposed approach is verified not only by simulations but also by experimental results under the normal incidence at microwave frequencies. Moreover, the wideband absorber is lighter than the conventional magnetic absorber. These results indicate that our proposed absorbing structures can be used for designing good electromagnetic absorbers.
Keywords:  magnetic absorbing material      periodic structure      bandwidth  
Received:  19 April 2012      Revised:  21 June 2012      Accepted manuscript online: 
PACS:  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  68.35.bt (Other materials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Aeronautical Science Foundation of China (Grant No. 2011ZF88013).
Corresponding Authors:  Zhou Yong-Jiang     E-mail:  paniamer@yahoo.cn

Cite this article: 

Zhou Yong-Jiang (周永江), Pang Yong-Qiang (庞永强), Cheng Hai-Feng (程海峰) Design and realization of magnetic-type absorber with broadened operating frequency band 2013 Chin. Phys. B 22 015201

[1] Salisbury W W (U.S. Patent) 2 599 944 [1952-6-10]
[2] Knott E F, Shaeffer J F and Tuley M T 2004 Radar Cross Section (2nd edn.) (London: Atech House)
[3] Kim D Y, Chung Y C, Kang T W and Kim H C 1996 IEEE Tran. Magn. 32 555
[4] Moucka R, Vilcakova J, Kazantseva N E, Lopatin A V and Saha P 2008 J. Appl. Phys. 104 103718
[5] Kim S S 2011 IEEE Tran. Magn. 47 4314
[6] Liu X G, Geng D Y, Ma S, Meng H, Tong M, Kang D J and Zhang Z D 2008 J. Appl. Phys. 104 064319
[7] Lian L X, Deng L J, Han M, Tang W and Feng S D 2007 J. Appl. Phys. 101 09M520
[8] Liu J R, Itoh M, Terada M, Horikawa T and Machida K 2007 Appl. Phys. Lett. 91 093101
[9] Dong X L, Zhang X F and Zuo F 2008 Appl. Phys. Lett. 92 013127
[10] Zhang B S, Feng Y, Xiong J, Zhang Y and Lu H X 2006 IEEE Tran. Magn. 42 1778
[11] Lee S E, Choi O and Hahn H T 2008 J. Appl. Phys. 104 033705
[12] Wen B, Zhao J J, Duan Y P, Zhang X G, Zhao Y B, Dong C, Liu S H and Li T J 2006 J. Phys. D: Appl. Phys. 39 1960
[13] Rosa I M D, Mancinelli R, Sarasini F, Sarto M S and Tamburrano A 2009 IEEE Tran. Electromagn.Compat. 51 700
[14] He Y F, Gong R Z, Nie Y, He H H and Zhao Z S 2005 J. Appl. Phys. 98 084903
[15] Han M G, Ou Y and Deng L J 2009 J. Magn. Magn. Mater. 321 1125
[16] Chamaani S, Mirtaheri S A, Teshnehlab M, Shoorehdeli M A and Seydi V 2008 PIER 79 353
[17] Asi M J and Dib N I 2010 PIER B 26 101
[18] Munk B A 2000 Frequency Selective Surfaces: Theory and Design (New York: Wiley)
[19] Kazantsev Y N, Lopatin A V, Kazantseva N E, Shatrov A D, Mal'tsev V P, Vilcakova J and Saha P 2010 IEEE Tran. Antenn. Propag. 58 1227
[20] Chen H Y, Zhang H B and Deng L J 2010 IEEE Antennas Wireless Propag. Lett. 9 899
[21] Sun L K, Cheng H F, Zhou Y J and Wang J 2012 Chin. Phys. B 21 055201
[22] Tretyakov S A 2003 Analytical Modeling in Applied Electromagnetic (Norwood: Artech House)
[1] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[2] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[3] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[4] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[5] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[6] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[7] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[8] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[9] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[10] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[11] A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures
Ya-li Zhao(赵亚丽), Fu-hua Ma(马富花), Xu-feng Li(李旭峰), Jiang-jiang Ma(马江将), Kun Jia(贾琨), Xue-hong Wei(魏学红). Chin. Phys. B, 2018, 27(2): 027302.
[12] Femtosecond laser induced nanostructuring of zirconium in liquid confined environment
Nisar Ali, Shazia Bashir, Umm-i-Kalsoom, M. Shahid Rafique, Narjis Begum, Wolfgang Husinsky, Ali Ajami, Chandra S. R. Natahala. Chin. Phys. B, 2017, 26(1): 015204.
[13] Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons
Song Yue(岳松), Dong-ping Gao(高冬平), Zhao-chuan Zhang(张兆传), Wei-long Wang(王韦龙). Chin. Phys. B, 2016, 25(11): 118403.
[14] Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance
Li Jin (李进), Xiong Bing (熊兵), Sun Chang-Zheng (孙长征), Luo Yi (罗毅), Wang Jian (王健), Hao Zhi-Biao (郝智彪), Han Yan-Jun (韩彦军), Wang Lai (汪莱), Li Hong-Tao (李洪涛). Chin. Phys. B, 2015, 24(7): 078503.
[15] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
No Suggested Reading articles found!