Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024212    DOI: 10.1088/1674-1056/28/2/024212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation

Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟)
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
Abstract  Using a pump with a multi-line spectrum to broaden the Brillouin gain bandwidth is an effective way to achieve low-distortion amplification with high gain. Here, we theoretically and experimentally investigate the generation of a broadband Brillouin gain spectrum based on multi-frequency intensity modulation in an optical fiber. The arbitrary bandwidth of the Brillouin gain spectrum of stimulated Brillouin scattering (SBS) can be obtained as expected. In our experiment, a broadband Brillouin gain spectrum with a bandwidth of about 200 MHz is demonstrated. We also achieve a low-distortion amplification of a weak signal, whose maximum magnification is 65 dB for a -68-dBm input power signal.
Keywords:  Brillouin gain spectrum      bandwidth      intensity modulation      low distortion amplification  
Received:  17 September 2018      Revised:  15 October 2018      Accepted manuscript online: 
PACS:  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  42.65.-k (Nonlinear optics)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61605034).
Corresponding Authors:  De-Xin Ba, Zhi-Wei Lv     E-mail:  dexinba@hit.edu.cn;lvzw@hit.edu.cn

Cite this article: 

Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟) High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation 2019 Chin. Phys. B 28 024212

[1] Zhu Z H, Gao W, Mu C Y and Li H Y 2016 Optica 3 212
[2] Yuan H, Wang Y L, Lu Z W and Zheng Z X 2015 Chin. Phys. B 24 094210
[3] Liu G B, Yang Y F, Wang J H, Zheng Y, Chen X L, Liu K, Zhao C, Qi Y F, He B and Zhou J 2016 Chin. Phys. Lett. 33 074207
[4] Bai Z X, Yuan H, Liu Z H, Xu P B, Gao Q L, Williams R J, Kitzler O, Mildren R P, Wang Y L and Lu Z W 2018 Opt. Mater. 75 626
[5] Zhou D W, Dong Y K, Wang B Z, Pang C, Ba D X, Zhang H Y, Lu Z W, Li H and Bao X Y 2018 Light: Sci. & Appl. 7 32
[6] Kang Z J, Fan Z W, Huang Y T, Zhang H B, Ge W Q, Li M S, Yan X C and Zhang G X 2018 Opt. Express 26 6560
[7] Wei W, Yi L L, Jaouen Y and Hu W S 2014 Opt. Express 22 23249
[8] Zhu Z H, Chen P, Li H W, Zhao B, Zhou Z Y, Hu W, Gao W, Lu Y Q and Shi B S 2018 Appl. Phys. Lett. 112 161103
[9] Zhu Z H, Sheng L W, Lu Z W, He W M and Gao W 2017 Sci. Rep. 7 40526
[10] Yi L L, Jaouën Y, Hu W S, Su Y K and Bigo S 2007 Opt. Express 15 16972
[11] Shi M Y, Yi L L, Wei W and Hu W S 2018 Opt. Express 26 16113
[12] Zheng D, Pan W, Yan L S, Luo B, Zou X H, Liu X K and Yi A L 2014 Acta Phys. Sin. 63 154214 (in Chinese)
[13] Zadok A, Eyal A and Tur M 2007 J. Lightwave Technol. 25 2168
[14] Li H W, Chang N, Zhang H Y, Wang B, Gao W and Zhu Z H 2017 Appl. Opt. 56 5745
[15] Lu Z W, Dong Y K and Li Q 2007 Opt. Express 15 1871
[16] Dong Y K, Lu Z W, Li Q and Liu Y F 2008 J. Opt. Soc. Am. B 25 C109
[17] Ba D X 2013 “Research on Techniques of Optical Delay Based on Slow Light of Stimulated Brillouin Scattering in Optical Fibers”, Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[18] Sun Y F, Zhang Z J, Zhao L Y, Sun W M and Zhao Y 2018 Chin. Phys. B 27 094213
[19] Xu F and Wang Y Q 2015 Chin. Phys. B 24 104214
[20] Massot-Campos M and Oliver-Codina G 2015 Sensors 15 31525
[21] Li Y and Ruichek Y 2014 Sensors 14 10454
[1] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[2] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[3] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[4] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[5] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[6] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[7] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[8] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[9] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[10] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[11] Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons
Song Yue(岳松), Dong-ping Gao(高冬平), Zhao-chuan Zhang(张兆传), Wei-long Wang(王韦龙). Chin. Phys. B, 2016, 25(11): 118403.
[12] Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance
Li Jin (李进), Xiong Bing (熊兵), Sun Chang-Zheng (孙长征), Luo Yi (罗毅), Wang Jian (王健), Hao Zhi-Biao (郝智彪), Han Yan-Jun (韩彦军), Wang Lai (汪莱), Li Hong-Tao (李洪涛). Chin. Phys. B, 2015, 24(7): 078503.
[13] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[14] Fabrication and characterization of novel high-speed InGaAs/InP uni-traveling-carrier photodetector for high responsivity
Chen Qing-Tao (陈庆涛), Huang Yong-Qing (黄永清), Fei Jia-Rui (费嘉瑞), Duan Xiao-Feng (段晓峰), Liu Kai (刘凯), Liu Feng (刘锋), Kang Chao (康超), Wang Jun-Chu (汪君楚), Fang Wen-Jing (房文敬), Ren Xiao-Min (任晓敏). Chin. Phys. B, 2015, 24(10): 108506.
[15] Mechanisms of ultrasonic modulation of multiply scattered incoherent light based on diffusion theory
Zhu Li-Li (朱莉莉), Li Hui (李晖). Chin. Phys. B, 2015, 24(1): 018701.
No Suggested Reading articles found!