Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010204    DOI: 10.1088/1674-1056/22/1/010204
GENERAL Prev   Next  

Effect of grain boundary sliding on the toughness of ultrafine grain structure steel: a molecular dynamics simulation study

Xie Hong-Xian (谢红献)a, Liu Bo (刘波)a, Yin Fu-Xing (殷福星)b, Yu Tao (于涛)c
a School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China;
b Materials Research Institute for Energy Equipments, China First Heavy Industries, China;
c Central Iron and Steel Research Institute, Beijing 100081, China
Abstract  Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel. The simulation results suggest that the sliding of the {001}/{110} type and {110}/{111} type grain boundary can improve the impact toughness. Then, the mechanism of grain boundary sliding is studied and it is found that the motion of dislocations along the grain boundary is the underlying cause of the grain boundary sliding. Finally, the sliding of the grain boundary is analysed from the standpoint of the energy. We conclude that the measures which can increase the quantity of the {001}/{110} type and {110}/{111} type grain boundary and elongate the free gliding distance of dislocations along these grain boundaries will improve the low-temperature impact toughness of the ultrafine grain structure steel.
Keywords:  molecular dynamics simulations      grain boundary      crack      ultrafine grain structure steel  
Received:  10 June 2012      Revised:  26 June 2012      Accepted manuscript online: 
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  83.60.Uv (Wave propagation, fracture, and crack healing)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
Corresponding Authors:  Xie Hong-Xian     E-mail:  hongxianxie@163.com

Cite this article: 

Xie Hong-Xian (谢红献), Liu Bo (刘波), Yin Fu-Xing (殷福星), Yu Tao (于涛) Effect of grain boundary sliding on the toughness of ultrafine grain structure steel: a molecular dynamics simulation study 2013 Chin. Phys. B 22 010204

[1] Morris Jr J W 2008 Science 320 1022
[2] Pickering F B 1978 Physical Metallurgy and the Design of Steels (London: Applied Science Publishers) p. 16
[3] Gladman T and Pickering F B 1983 The Effect of Grain Size on the Mechanical Properties of Ferrous Materials (London: Applied Science Publishers) p. 14
[4] Takaki S, Kawasaki K and Kimura Y 2001 J. Mater. Process. Technol. 117 359
[5] Morris Jr J W, Lee C S and Guo Z 2003 ISIJ Int. 43 410
[6] Tsuji N, Okuno S, Koizumi Y and Minamino Y 2004 Mater. Trans. 45 2272
[7] Song R, Ponge D and Raabe D 2005 Acta Mater. 53 4881
[8] Stolyarov V V, Valiev R Z and Zhu Y T 2006 Appl. Phys. Lett. 88 041905
[9] Karimpoor A A, Aust K T and Erb U 2007 Scr. Mater. 56 201
[10] Shanmugam P and Pathak S D 1996 Eng. Fract. Mech. 53 991
[11] Mintz B, W B Morrison. 2007 Mat. Sci. Tech. 23 1346
[12] Kimura Y, Inoue T, Yin F, Sitdikov O and Tsuzaki K 2007 Scr. Mater. 57 465
[13] Kimura Y, Inoue T, Yin F and Tsuzaki K 2008 Science 320 1057
[14] Inoue T, Yin F X, Kimura Y, Tsuzaki K and Shojiro Ochiai 2010 Metallurgical and Materials Transactions A 41 341
[15] Kimura Y, Inoue T, Yin F X and Tsuzaki K 2010 ISIJ Int. 50 152
[16] Zhang J M, Huang Y H, Xu K W and Ji V 2007 Chin. Phys. 16 210
[17] Chen J, Chen D Q and Zhang J L 2007 Chin. Phys. 16 2779
[18] Chen L Q, Wang C Y and Yu T 2008 Chin. Phys. B 17 662
[19] Li L, Shao J L, Li Y F, Duan S Q and Liang J Q 2012 Chin. Phys. B 21 026402
[20] Plimpton S 1995 J. Comput. Phys. 117 1
[21] Plimpton S 2007 Large-Scale Atomic/Molecular Massively Parallel Simulator (Sandia National Laboratories)
[22] Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y and Asta M 2003 Philos. Mag. 83 3977
[23] Malerba L, Marinica M C, Anento N, Bjükas C, Nguyen H, Domain C, Djurabekova F, Olsson P, Nordlund K, Serra A, Terentyev D, Willaime F and Becquart C S 2010 J. Nucl. Mater. 406 19
[24] Sih G C and Liebowitz H 1968 Mathematical Theories of Brittle Facture (New York: Academic Press)
[25] Cleveland C L, Luedtke W D and Landman U 1999 Phys. Rev. B 60 5065
[26] Alexander S 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[27] Bancroft D, Peterson E and Minshall S 1956 J. Appl. Phys. 27 291
[28] Zhang J and Guyot F 1999 Phys. Chem. Miner. 26 419
[29] Fujiwara H, Inomoto H, Sanada R and Ameyama K 2001 Scr. Mater. 44 2039
[30] Nishimura K and Miyazaki N 2001 Comput. Model. Eng. Sci. 2 143
[31] Kadau K, Germann T C, Lohmdahl P S and Holian B L 2002 Science 296 1681
[32] Sutton A P and Balluffi R W 1996 Interfaces in Crystalline Materials (Oxford: Oxford Science Publications)
[33] Gutkin M Yu and Ovidko I A 2004 Plastic Deformation in Nanocrystalline Materials (Berlin: Springer)
[34] Conrad H and Narayan J 2000 Scr. Mater. 42 1025
[35] van Swygenhoven H and Derlet P A 2001 Phys. Rev. B 64 224105
[36] Padmanabhan K A and Gleiter H 2004 Mater. Sci. Eng. A 381 28
[37] Demkowicz M J, Argon A S Farkas D and Frary M 2007 Philos. Mag. 87 4253
[38] Farkas D 2007 Metallurgical Mater. Trans. A 38 2168
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[3] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[4] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[5] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[6] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[7] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[8] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[9] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[10] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[11] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[12] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[13] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[14] Molecular dynamics simulations of dopant effectson lattice trapping of cracks in Ni matrix
Shulan Liu(刘淑兰) and Huijing Yang(杨会静). Chin. Phys. B, 2021, 30(11): 116107.
[15] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
No Suggested Reading articles found!