Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010301    DOI: 10.1088/1674-1056/22/1/010301
GENERAL Prev   Next  

Bound states of the Dirac equation with position-dependent mass for the Eckart potential

Bahar M. K.a b, Yasuk F.a
a Department of Physics, Erciyes University, 38039, Kayseri, Turkey;
b Department of Physics, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
Abstract  Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position dependent mass. The centrifugal term is approximated by an exponential form, and the relativistic energy spectrum and the normalized eigenfunctions are obtanied explicitly.
Keywords:  Dirac equation      position-dependent mass      Eckart potential      asymptotic iteration method  
Received:  15 March 2012      Revised:  11 April 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
Fund: Project supported by Erciyes University-FBA-09-999.
Corresponding Authors:  Yasuk F.     E-mail:  yasuk@erciyes.edu.tr

Cite this article: 

Bahar M. K., Yasuk F. Bound states of the Dirac equation with position-dependent mass for the Eckart potential 2013 Chin. Phys. B 22 010301

[1] Levai G and Özer O 2010 J. Math. Phys. 51 092103
[2] Bastard G 1988 Wave Mechanics Applied to Semiconductor Heterostructure (Les Ulis: Les Editions de Physique)
[3] Harrison P 2000 Quantum Wells, Wires and Dots (New York: Wiley)
[4] Serra L and Lipparini E 1997 Europhys. Lett. 40 667
[5] Arias de Saavedra F, Boronat J, Polls A and Fabrocini A 1994 Phys. Rev. B 50 4248
[6] Gora T and Williams F 1969 Phys. Rev. 177 1179
[7] Plastino A R, Rigo A, Casas M, Garcias F and Plastino A 1999 Phys. Rev. A 60 4318
[8] de Souza Dutra A and Almeida C A S 2000 Phys. Lett. A 275 25
[9] Alhaidari A D 2002 Phys. Rev. A 66 042116
[10] Alhaidari A D 2003 Int. J. Theor. Phys. 42 2999
[11] Roy B and Roy P 2002 J. Phys. A 35 3961
[12] Koc R, Koca M and Körcük E 2002 J. Phys. A 35 L527
[13] Koc R, Koca M and Sahinoglu G 2005 Eur. Phys. J. B 48 583
[14] Gönül B, Özer O, Gönül B and Uzgün F 2002 Mod. Phys. Lett. A 17 2453
[15] Gönül B, Gönül B, Tutcu D and Özer O 2002 Mod. Phys. Lett. 17 2057
[16] Bagchi B, Gorain P, Quesne C and Roychoudhury R 2004 Mod. Phys. Lett. A 19 2765
[17] Quesne C and Tkachuk V M 2004 J. Phys. A 37 4267
[18] Quesne C 2006 Ann. Phys. 321 1221
[19] Panella O, Biondini S and Arda A 2010 J. Phys. A: Math. Theor. 43 325302
[20] Alhaidari A D 2007 Phys. Rev. A 75 042707
[21] Alhaidari A D, Bahlouli H, Al Hasan A and Abdelmonem M S 2007 Phys. Rev. A 75 062711
[22] Alhaidari A 2004 Phys. Lett. A 322 72
[23] de Souza Dutra A and Jia C S 2006 Phys. Lett. 352 484
[24] Vakarchuk I O 2005 J. Phy. A: Math. Gen. 38 4727
[25] Ikhdair S M and Sever R 2010 arXiv:1001.4327 [math-ph]
[26] Ikhdair S M and Sever R 2010 arXiv:1001.3943 [math-ph]
[27] Jia C S, Chen T and Cui L G 2009 Phys. Lett. A 373 1621
[28] Jia C S and de Souza Dutra A 2008 Ann. Phys. 323 566
[29] Dekar L, Chetouani L and Hammann T F 1998 J. Math. Phys. 39 2551
[30] Peng X L, Liu J Y and Jia C S 2006 Phys. Lett. A 352 478
[31] Agboola D 2010 arXiv:1011.2368v1 [math-ph]
[32] Ciftci H, Hall R L and Saad N 2003 J. Phys. A 36 11807
[33] Ciftci H, Hall R L and Saad N 2005 J. Phys. A 38 1147
[34] Saad N, Hall R L and Ciftci H 2006 J. Phys. A 39 13445
[35] Greiner W 2000 Relativistic Quantum Mechanics (3rd edn.) (Berlin: Springer)
[36] Guo J Y, Fang X Z and Xu F X 2005 Nucl. Phys. A 757 411
[37] Guo J Y and Sheng Z Q 2005 Phys. Lett. A 338 90
[38] Setare M R and Haidari S 2010 Phys. Scr. 81 065201
[39] Soylu A, Bayrak O and Boztosun I 2008 J. Phys. A: Math. Theor. 41 065308
[40] Xu Y, He S and Jia C S 2008 J. Phys. A: Math. Theor. 41 255302
[41] Eckart C 1930 Phys. Rev. 35 1303
[42] Saad N 2007 Phys. Scr. 76 623
[43] Arfken G. B and Weber H J 1995 Mathematical Methods for Physicists (San Diego: Academic Press)
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] On superintegrable systems with a position-dependent mass in polar-like coordinates
Hai Zhang(章海)†. Chin. Phys. B, 2020, 29(10): 100201.
[3] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[4] Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields
M Eshghi, H Mehraban, S M Ikhdair. Chin. Phys. B, 2017, 26(6): 060302.
[5] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[6] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[7] The bound state solution for the Morse potential with a localized mass profile
S Miraboutalebi. Chin. Phys. B, 2016, 25(10): 100301.
[8] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[9] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[10] Unified treatment of the bound states of the Schiöberg and the Eckart potentials using Feynman path integral approach
A. Diaf. Chin. Phys. B, 2015, 24(2): 020302.
[11] Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well
Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto, Dong Shi-Hai. Chin. Phys. B, 2015, 24(10): 100303.
[12] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[13] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[14] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[15] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
No Suggested Reading articles found!