Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010203    DOI: 10.1088/1674-1056/22/1/010203
GENERAL Prev   Next  

Designing shielded radio-frequency phased-array coils for magnetic resonance imaging

Xu Wen-Long (徐文龙)a, Zhang Ju-Cheng (张鞠成)a, Li Xia (李霞)a b, Xu Bing-Qiao (徐冰俏)a, Tao Gui-Sheng(陶贵生)ab
a Department of Biomedical Engineering, China Jiliang University, Hangzhou 310018, China;
b Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coil for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of magnetic field of the coil's winding pattern, the selection of penalty factor is discussed in detail.
Keywords:  active shield      phased-array coil      radio-frequency coil      magnetic resonance imaging  
Received:  26 May 2012      Revised:  24 October 2012      Accepted manuscript online: 
PACS:  02.30.Zz (Inverse problems)  
  41.20.-q (Applied classical electromagnetism)  
  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  84.32.Hh (Inductors and coils; wiring)  
Fund: Project supported by the National Nature Science Foundation of China (Grant No. 30900332), Grant of General Administration of Quality Supervision Inspection and Quarantine of China (Grant No. 201210079), the Program for Science and Technology Department of Zhejiang Province, China (Grant Nos. 2010C14010 and 2010C33172), and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y2090966).
Corresponding Authors:  Xu Wen-Long     E-mail:  wenlongxu@sina.com

Cite this article: 

Xu Wen-Long (徐文龙), Zhang Ju-Cheng (张鞠成), Li Xia (李霞), Xu Bing-Qiao (徐冰俏), Tao Gui-Sheng (陶贵生) Designing shielded radio-frequency phased-array coils for magnetic resonance imaging 2013 Chin. Phys. B 22 010203

[1] Zu D L, Guo H, Song X Y and Bao S L 2002 Chin. Phys. B 11 1008
[2] Tang X, Hong L M and Zu D L 2010 Chin. Phys. B 19 078702
[3] Jin J M1999 Electromagnetic Analysis and Design in Magnetic Resonance Imaging (Boca Raton: CRC Press)
[4] Meng B, Huang K W and Wang W M 2010 Chin. Phys. B 19 076103
[5] Turner R 1986 J. Phys. D: Appl. Phys. 19 147
[6] Fobes L K, Crozier S and Doddrell D M 1997 SIAM J. Appl. Math. 57 401
[7] Lawrence B G, Crozier S and Yau D D 2002 IEEE Trans. Biomed. Eng. 49 64
[8] While P T, Forbes L K and Crozier S 2005 Meas. Sci. Technol. 16 997
[9] Cui K and Yang G W 2005 Chin. Phys. Lett. 22 2738
[10] Tang F K, Hua N, Tang X Z, Lu H, Wang Q and Ma P 2010 Chin. Phys. B 19 120601
[11] Hua N, Tang X Z, Lu H, Tang F K, Wang Q and Ma P 2010 Chin. Phys. B 19 080601
[12] Hua S X and Zhao X F 2011 Chin. Phys. B 20 029201
[13] Liu W T, Zu D L and Tang X 2010 Chin. Phys. B 19 018701
[14] Zhao X F and Huang S X 2011 Acta Phys. Sin. 60 119203 (in Chinese)
[15] Zhou J M, Wang H N and Yao J J 2012 Acta Phys. Sin. 61 089101 (in Chinese)
[16] Ding G T 2011 Acta Phys. Sin. 60 044503 (in Chinese)
[17] Hoult D I and Deslauriers R 1994 J. Magn. Reson. Ser. A 108 9
[18] Elaine A C and Brian K R 1998 Magn. Reson. Med. 39 270
[19] Li Y, Liu F and Weber E 2009 Concepts Magn. Reson. 35B 221
[20] Martens M A, Petropoulos L S and Brown R W 1991 Rev. Sci. Instrum. 62 2639
[21] While P T, Forbes L K and Crozier S 2005 Meas. Sci. Technol. 16 1381
[22] Jasinski K, Mlynarczyk A, Latta P, Volotovskyy V, Weglarz W P and Tomanek B 2012 Magn. Reson. Imaging 30 70
[23] Roemer P B, Edelstein W A, Hayes C E, Souza S P and Mueller O M 1990 Magn. Reson. Med. 16 192
[24] Wu B, Wang C S, Douglas A C K, Xu D, Vigneron D B, Nelson S J and Zhang X L 2010 IEEE Trans. Med. Imaging 29 179
[25] While P T, Forbes L K and Crozier S 2007 Meas. Sci. Technol. 18 245
[26] Alan E W, Frederick S J and Abdulhassain H M (European Patent) 0140259 [1985-05-08]
[1] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[2] Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method
Hui Pan(潘辉), Feng Jia(贾峰), Zhen-Yu Liu(刘震宇), Maxim Zaitsev, Juergen Hennig, Jan G Korvink. Chin. Phys. B, 2018, 27(5): 050201.
[3] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[4] Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease
Ni Huang-Jing (倪黄晶), Zhou Lu-Ping (周泸萍), Zeng Peng (曾彭), Huang Xiao-Lin (黄晓林), Liu Hong-Xing (刘红星), Ning Xin-Bao (宁新宝), the Alzheimer's Disease Neuroimaging Initiative. Chin. Phys. B, 2015, 24(7): 070502.
[5] Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging
Yu Shao-De (余绍德), Wu Shi-Bin (伍世宾), Wang Hao-Yu (王浩宇), Wei Xin-Hua (魏新华), Chen Xin (陈鑫), Pan Wan-Long (潘万龙), Hu Jiani, Xie Yao-Qin (谢耀钦). Chin. Phys. B, 2015, 24(12): 128711.
[6] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[7] Self-assembled superparamagnetic nanoparticles as MRI contrast agents–A review
Su Hong-Ying (苏红莹), Wu Chang-Qiang (吴昌强), Li Dan-Yang (李丹阳), Ai Hua (艾华). Chin. Phys. B, 2015, 24(12): 127506.
[8] Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique
Li Jing (李敬), Cai Cong-Bo (蔡聪波), Chen Lin (陈林), Chen Ying (陈颖), Qu Xiao-Bo (屈小波), Cai Shu-Hui (蔡淑惠). Chin. Phys. B, 2015, 24(10): 108703.
[9] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[10] Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications
Hu Yong (胡勇), Li Jing-Chao (李静超), Shen Ming-Wu (沈明武), Shi Xiang-Yang (史向阳). Chin. Phys. B, 2014, 23(7): 078704.
[11] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2014, 23(5): 057505.
[12] Parallel variable-density spiral imaging using nonlocal total variation reconstruction
Fang Sheng (方晟), Guo Hua (郭华). Chin. Phys. B, 2014, 23(5): 057401.
[13] Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer
Yue Xiu-Li (岳秀丽), Ma Fang (马放), Dai Zhi-Fei (戴志飞). Chin. Phys. B, 2014, 23(4): 044301.
[14] Multi-objective optimization of gradient coil for benchtop magnetic resonance imaging system with high-resolution
Wang Long-Qing (王龙庆), Wang Wei-Min (王为民). Chin. Phys. B, 2014, 23(2): 028703.
[15] Magnetic nanoparticle-based cancer therapy
Yu Jing (余靓), Huang Dong-Yan (黄冬雁), Muhammad Zubair Yousaf, Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2013, 22(2): 027506.
No Suggested Reading articles found!