Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 098101    DOI: 10.1088/1674-1056/21/9/098101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of carbon convection field on large diamond growth under high-pressure high-temperature conditions

Hu Mei-Hua (胡美华)a, Li Shang-Sheng (李尚升)a, Ma Hong-An (马红安)b, Su Tai-Chao (宿太超)a, Li Xiao-Lei (李小雷)a, Hu Qiang (胡强)a, Jia Xiao-Peng (贾晓鹏)a b
a School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Large diamond crystals were successfully synthesized by FeNi-C system using temperature gradient method under high-pressure high-temperature conditions. The assembly of the growth cell was improved and the growth process of diamond was investigated. Effects of the symmetry of carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of seed crystal in the melted catalyst/solvent. The results indicate that morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature. Moreover, finite element method was applied to analyze carbon convection mode of the melted catalyst/solvent around the diamond crystal. This work is helpful for understanding the growth mechanism of diamond.
Keywords:  diamond      high pressure and high temperature      temperature gradient method      carbon convection field  
Received:  01 August 2011      Revised:  30 October 2011      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  07.20.Ka (High-temperature instrumentation; pyrometers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50572032, 50731006, and 50801030) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51001042 and 51002045).
Corresponding Authors:  Jia Xiao-Peng     E-mail:  jiaxp@jlu.edu.cn

Cite this article: 

Hu Mei-Hua (胡美华), Li Shang-Sheng (李尚升), Ma Hong-An (马红安), Su Tai-Chao (宿太超), Li Xiao-Lei (李小雷), Hu Qiang (胡强), Jia Xiao-Peng (贾晓鹏) Effects of carbon convection field on large diamond growth under high-pressure high-temperature conditions 2012 Chin. Phys. B 21 098101

[1] Burns R C, Hansen J O, Spits R A, Sibanda M, Welbourn C M and Welch D L 1999 Diamond Relat. Mater. 8 1433
[2] Kanda H, Akaishi M and Yamaoka S 1994 Appl. Phys. Lett. 65 784
[3] Zhou L, Jia X P, Ma H A, Zheng Y J and Li Y T 2008 Chin. Phy. B 17 4665
[4] Strong H M and Hanneman R E 1967 J. Chem. Phys. 46 3668
[5] Kanda H, Ohsawa T, Fukunaga O and Sunagawa I 1989 J. Cryst. Growth 94 115
[6] Sumiya H, Toda N and Satoh S 2002 J. Cryst. Growth 237 1281
[7] Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y and Jia X P 2011 Chin. Phys. B 20 028103
[8] Zhou L, Jia X P, Ma H A, Zheng Y J and Li Y T 2009 Chin. Phys. B 18 333
[9] Qin J M, Zhang Y, Cao J M and Tian L F 2011 Acta Phys. Sin. 60 058102 (in Chinese)
[10] Hu X J, Hu H, Chen X H and Xu B 2011 Acta Phys. Sin. 60 068101 (in Chinese)
[11] Han Q G, Ma H A, Xiao H Y, Li R, Zhang C, Li Z C, Tian Y and Jia X P 2010 Acta Phys. Sin. 59 1923 (in Chinese)
[12] Meng Y F, Yan C S, Lai J, Krasnicki S, Shu H, Yu T, Liang Q, Mao H K and Hemley R J 2008 PNAS 105 17620
[13] Liang Q, Chin C Y, Lai J, Yan C, Meng Y F, Mao H K and Hemley R J 2009 Appl. Phys. Lett. 94 024103
[14] Li R B 2009 Acta Phys. Sin. 58 1287 (in Chinese)
[15] Wentorf R H 1971 J. Phys. Chem. 75 1833
[16] Strong H M and Chrenko R M 1971 J. Phys. Chem. 75 1838
[17] Demina S E, Kalaev V V, Lysakovskyi V V, Serga M A, Kovalenko T V and Ivahnenko S A 2009 J. Cryst. Growth 311 680
[18] Tian Y, Jia X P, Zang C Y, Li R, Li S S, Xiao H Y, Zhang Y F, Huang G F, Han Q G, Ma L Q, Li Y, Chen X Z, Zhang C and Ma H A 2009 Chin. Phys. Lett. 26 028104
[19] Ma H A, Jia X P, Chen LX, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Zhang G and Phillip B 2002 J. Phys.: Condens. Matter 14 11269
[20] Sato Y, Sugisawa K, Aoki D and Yamamura T 2005 Meas. Sci. Technol. 16 363
[21] Ma Q F 1986 Handbook of Practical Thermo-Physical Property (Beijing: China Agricultural Machinery Publishing House) p. 1110 (in Chinese)
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[6] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[7] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[8] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[9] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[10] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[11] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[12] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[13] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[14] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[15] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
No Suggested Reading articles found!