Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097103    DOI: 10.1088/1674-1056/21/9/097103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The electronic and magnetic properties of (Mn,C)-codoped ZnO diluted magnetic semiconductor

Zhao Long (赵龙), Lu Peng-Fei (芦鹏飞), Yu Zhong-Yuan (俞重远), Ma Shi-Jia (马世甲), Ding Lu (丁路), Liu Jian-Tao (刘建涛)
Key Laboratory of Information Photonics and Optical Communications of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The electronic and magnetic properties of (Mn,C)-codoped ZnO are studied in the Perdew-Burke-Ernzerhof form of generalized gradient approximation of the density functional theory. By investigating five geometrical configurations, we find that Mn doped ZnO exhibits anti-ferromagnetic or spin-glass behaviour, and there are no carriers to mediate the long range ferromagnetic (FM) interaction without acceptor co-doping. We observe that the FM interaction for (Mn,C)-codoped ZnO is due to the hybridization between C 2p and Mn 3d states, which is strong enough to lead to hole-mediated ferromagnetism at room temperature. Meanwhile, We demonstrate that ZnO co-doped with Mn and C has a stable FM ground state and show that the (Mn,C)-codoped ZnO is FM semiconductor with super-high Curie temperature (TC=5475 K). These results are conducive to the design of dilute magnetic semiconductors with codopants for spintronics applications.
Keywords:  density functional theory      electronic structure      magnetism      Curie temperature  
Received:  09 January 2012      Revised:  01 March 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Project supported by Beijing University of Posts and Telecommunications Excellent Ph. D. Student Foundation, China (Grant No. CX201114), the National Natural Science Foundation of China (Grant No. 61102024), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2012RC0401).
Corresponding Authors:  Yu Zhong-Yuan     E-mail:  yuzhongyuan30@gmail.com

Cite this article: 

Zhao Long (赵龙), Lu Peng-Fei (芦鹏飞), Yu Zhong-Yuan (俞重远), Ma Shi-Jia (马世甲), Ding Lu (丁路), Liu Jian-Tao (刘建涛) The electronic and magnetic properties of (Mn,C)-codoped ZnO diluted magnetic semiconductor 2012 Chin. Phys. B 21 097103

[1] Awschalom D D, Flatte M E and Samarth N 2002 Sci. Am. Inc. 286 67
[2] Gopal P and Spaldin N A 2006 Phys. Rev. B 74 094418
[3] Luo J, Liang J K, Liu Q L, Liu F S, Zhang Y, Sun B J and Rao G H 2005 J. Appl. Phys. 97 086106
[4] Li P, Deng S H, Zhang L, Yu J Y and Liu G H 2010 Chin. Phys. B 19 117102
[5] Cheng X M and Chien C L 2003 J. Appl. Phys. 93 7876
[6] Zhao L, Lu P F, Yu Z Y, Guo X Y, Shen T, Ye H, Yuan G F and Zhang L 2010 J. Appl. Phys. 108 113924
[7] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[8] Chambers S A, Schwartz D A, Liu W K, Kittilstved K R and Gamelin D R 2007 Appl. Phys. A 88 1
[9] Zhu Y, Cao J X, Yang Z Q and Wu R Q 2009 Phys. Rev. B 79 085206
[10] Pan H, Yi J B, Shen L, Wu R Q, Yeng J H, Lin J Y, Feng Y P, Ding J, Van L H and Yin J H 2007 Phys. Rev. Lett. 99 127201
[11] Ye X J, Song H A, Zhong W, Xu M H, Qi X S, Jin C Q, Yang Z X, Au C T and Du Y W 2008 J. Phys. D: Appl. Phys. 41 155005
[12] Zhou S, Xu Q, Potzger K, Talut G, Grötzschel R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M and Schmidt H 2008 Appl. Phys. Lett. 93 232507
[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[15] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[16] Bergqvist L, Erisksson O, Kudrnovsky J, Drchal V, Korzhavyi P and Turek I 2004 Phys. Rev. Lett. 93 137202
[17] Sato K, Schweika W, Dederichs P H and Yoshida H K 2004 Phys. Rev. B 70 201202
[18] Sato K, Dederichs P H and Katayama Y H 2003 Europhys. Lett. 61 403
[19] Zhao Y J, Shishidou T and Freeman A J 2003 Phys. Rev. Lett. 90 047204
[20] Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L and Mu R 2006 Appl. Phys. Lett. 88 242502
[21] Lin X L, Yan S S, Zhao M W, Hu S J, Yao X X, Han C, Chen Y X, Liu G L, Dai Y Y and Mei L M 2010 J. Appl. Phys. 107 033903
[22] Shim W Y, Jeon K A, Lee K I, Lee S Y, Jung M H and Lee W Y 2006 J. Electron. Mater. 35 635
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[11] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[12] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[13] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
No Suggested Reading articles found!