Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 088301    DOI: 10.1088/1674-1056/21/8/088301
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of shear on the symmetric diblock copolymer/nanorod mixture: A dissipative particle dynamics study

He Lin-Li (何林李), Zhang Rui-Fen (张瑞芬), Ji Yong-Yun (季永运 )
Department of Physics, Wenzhou University, Wenzhou 325035, China
Abstract  The phase behaviours of lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where nanorods each have a preferential affinity to one of blocks. Our results suggest that shear not only aligns the orientations of diblock copolymer templates and nanorods towards flow direction, but also regulates the distribution of nanorods within polymer matrix. Meanwhile, the shear-induced reorientation and morphology transitions of systems also significantly depend on the nanorod concentration. At certain nanorod concentrations, the competitions between shear-induced polymer thinning and nanorods dispersion behaviours determine the phase behaviours of composites. For high nanorod concentrations, no morphology transition is observed, but reorientation is present, in which the sheared nanorods are arranged into hexagonal packing arrays. Additionally, the orientation behaviour of nanorods is determined directly by the applied shear, also interfered by the shear-stretched copolymer molecules.
Keywords:  dissipative particle dynamics      shear      nanocomposites      orientation  
Received:  16 December 2011      Revised:  04 February 2012      Accepted manuscript online: 
PACS:  83.80.Uv (Block copolymers)  
  78.67.Sc (Nanoaggregates; nanocomposites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21074096 and 21104060).
Corresponding Authors:  He Lin-Li     E-mail:  helinli155@163.com

Cite this article: 

He Lin-Li (何林李), Zhang Rui-Fen (张瑞芬), Ji Yong-Yun (季永运 ) Effect of shear on the symmetric diblock copolymer/nanorod mixture: A dissipative particle dynamics study 2012 Chin. Phys. B 21 088301

[1] Leibler L 1980 Macromolecules 13 602
[2] Wang L, Chen X, Zhan J, Chai Y, Yang C, Xu L, Zhuang W and Jing B 2005 J. Phys. Chem. B 109 3189
[3] Shankar S S, Rai A, Ahmad A and Sastry M 2005 Chem. Mater. 17 566
[4] Kim F, Song J H and Yang P 2002 J. Am. Chem. Soc. 124 14316
[5] Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425
[6] Zhang Q L, Gupta S, Emrick T and Russell T P 2006 J. Am. Chem. Soc. 128 3898
[7] Tang Q and Ma Y 2009 J. Phys. Chem. B 113 10117
[8] He L, Zhang L and Liang H 2010 Polymer 51 3303
[9] Kalra V, Escobedo F and Joo Y L 2010 J. Chem. Phys. 132 024901
[10] Mendoza C, Pietsch T, Gindy N and Fahmi A 2008 Adv. Mater. 20 1179
[11] Pozzo D C and Walke L M 2007 Macromolecules 40 5801
[12] He L, Pan Z Q, Zhang L and Liang H 2011 Soft Matter 7 1147
[13] Groot R D and Madden T J 1998 J. Chem. Phys. 108 8713
[14] AlSunaidi B A, den Otter W K and Clarke J H R 2004 Phil. Trans. R. Soc. Lond. 362 773
[15] Allen M P and Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Clarendon Press) p. 385
[16] Lees A W and Edwards S F 1972 J. Phys. C 5 1921
[17] Matsen M W and Schick M 1994 Phys. Rev. Lett. 72 2660
[18] Lee J Y, Thompson R B, Jasnow D and Balazs A C 2002 Phys. Rev. Lett. 89 155503
[19] Koopi K A, Tirrell M F, Bates S, Almdal K and Colby R H 1992 J. Phys. II 2 1941
[20] Lísal M and Brennan J K 2007 Langmuir. 23 4809
[21] Satoh A, Chantrell R W, Kamiyama S and Coverdale G N 1996 J. Colloid Interface Sci. 181 422
[22] Fraser B, Denniston C and Müser M H 2006 J. Chem. Phys. 124 104902
[23] Rychkov I 2005 Macromol. Theory Simul. 14 207
[24] Mitamura K, Imae T, Saito N and Takai O 2007 J. Phys. Chem. B 111 8891
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[3] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[4] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[5] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[6] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[7] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[8] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[9] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[10] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[11] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[12] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[13] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[14] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[15] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
No Suggested Reading articles found!