Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087802    DOI: 10.1088/1674-1056/21/8/087802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain relaxation and optical properties of etched In0.19Ga0.81N nanorod arrays on the GaN template

Zhang Dong-Yan (张东炎)a b, Zheng Xin-He (郑新和)a, Li Xue-Fei (李雪飞)a, Wu Yuan-Yuan (吴渊渊)a b, Wang Hui (王辉)a, Wang Jian-Feng (王建峰)a, Yang Hui (杨辉)a
a Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, China;
b Graduate University of the Chinese Academy of Sciences, Beijing 100190, China
Abstract  InGaN/GaN epilayers, which are grown on sapphire substrates by metal-organic chemical-vapour deposition (MOCVD) method, are formed into nanorod arrays using inductively coupled plasma etching via self-assembled Ni nanomasks. The formation of nanorod arrays eliminates the tilt of the InGaN (0002) crystallographic plane with respect to its GaN bulk layer. Photoluminescence results show an apparent S-shaped dependence on temperature. The light extraction efficiency and intensity of photoluminescence emission at low temperature less than 30 K for the nanorod arrays are enhanced by the large surface area, which increases the quenching effect because of high density of surface states for the temperature above 30 K. Additionally, a red-shift for the InGaN/GaN nanorod arrays is observed due to the strain relaxation, which is confirmed by reciprocal space mapping measurements.
Keywords:  InGaN/GaN nanorod arrays      photoluminescence      strain relaxation      recombination  
Received:  20 December 2011      Revised:  09 February 2012      Accepted manuscript online: 
PACS:  78.66.Fd (III-V semiconductors)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  74.25.Gz (Optical properties)  
Fund: Project supported by the SONY-SINANO Joint Project (Grant No. Y1AAQ11001), the Suzhou Solar Cell Research Project, China (Grant No. ZXJ0903), and the International S & T Cooperation Projects (SINO-Japan), the Science Fund of the Ministry of Science and Technology of the People's Republic of China (Grant No. 2010DFA22770).
Corresponding Authors:  Zheng Xin-He     E-mail:  xhzheng2009@sinano.ac.cn

Cite this article: 

Zhang Dong-Yan (张东炎), Zheng Xin-He (郑新和), Li Xue-Fei (李雪飞), Wu Yuan-Yuan (吴渊渊), Wang Hui (王辉), Wang Jian-Feng (王建峰), Yang Hui (杨辉) Strain relaxation and optical properties of etched In0.19Ga0.81N nanorod arrays on the GaN template 2012 Chin. Phys. B 21 087802

[1] Takamoto T, Kaneiwa M, Imaizumi M and Yamaguchi M 2005 Prog. Photovoltaics 13 495
[2] Barnett A, Kirkpatrick D, Honsberg C, Moore D, Wanlass M, Emery K, Schwartz R, Carlson D, Bowden S, Aiken D, Gray A, Kurtz S, Kazmerski L and Moriarty T 2007 The 22nd European Photovoltaic Solar Energy Conference
[3] Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117
[4] Zheng X H, Horng R H, Wuu D S, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2008 Appl. Phys. Lett. 93 261108
[5] Chen X, Matthews K D, Hao D, Schaff W J and Eastman L F 2008 Phys. Status Solidi A 205 1103
[6] Neufeld J, Toledo N G, Cruz S C, Iza M, DenBaars S P and Mishra U K 2008 Appl. Phys. Lett. 93 143502
[7] Horng R H, Lin S T, Tsai Y L, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2009 IEEE Electron Dev. Lett. 30 724
[8] Zhang X B, Wang X L, Xiao H L, Yang C B, Hou Q F, Yin H B, Chen H and Wang Z G 2011 Chin. Phys. B 20 028402
[9] Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K and DenBaars S P 1997 Appl. Phys. Lett. 71 2572
[10] Zhang D Y, Zheng X H, Tang L J, Dong J R, Wang H and Yang H 2010 IEEE Electron Dev. Lett. 31 1422
[11] Ertekin E, Greaney P A, Chrzan D C and Sands T D 2005 J. Appl. Phys. 97 114325
[12] Seo H W, Tu L W, Lin Y T, Ho C Y, Chen Q Y, Yuan L, Norman D P and Ho N J 2009 Appl. Phys. Lett. 94 201907
[13] Ye H, Lu P F, Yu Z Y, Song Y X, Wang D L and Wang S M 2009 Nano Lett. 9 1921
[14] Chiu H, Lo M H, Lu T C, Yu P C, Huang H W, Kuo H C and Wang S C 2008 J. Lightwave Technol. 26 1445
[15] Kuykendall T, Ulrich P, Aloni S and Yang P 2007 Nat. Mater. 6 951
[16] Zervos M and Feiner L F 2004 J. Appl. Phys. 95 281
[17] Swadener J G and Picraux S T 2009 J. Appl. Phys. 105 044310
[18] Xu G Z, Liang H, Bai Y Q, Lau K M and Zhu X 2005 Acta Phys. Sin. 54 5344 (in Chinese)
[19] Wu J Q 2009 J. Appl. Phys. 106 1
[20] Suski T, Teisseyre H, Lepkowski S P, Perlin P, Mariette H, Kitamura T, Ishida Y, Okumura H and Chichibu S F 2003 Phys. Status. Solidi B 235 225
[21] Shan W, Walukiewicz W, Haller E E, Little B D, Song J J, McCluskey M D, Johnson N M, Feng Z C, Schurman M and Stall R A 1998 J. Appl. Phys. 84 4452
[22] Harutyunyan V S, Aivazyan A P, Weber E R, Kim Y, Park Y and Subramanya S G 2001 J. Phys. D: Appl. Phys. 34 A35
[23] Jian S R, Fang T H and Chuu D S 2006 Appl. Surf. Sci. 252 3033
[24] Faleev N, Jampana B, Jani O, Yu H B, Opila R, Ferguson I and Honsberg C 2009 Appl. Phys. Lett. 95 051915
[25] Guo X, Wang H, Jiang D S, Wang Y T, Zhao D G, Zhu J J, Liu Z S, Zhang S M and Yang H 2010 Chin. Phys. B 19 106802
[26] Zheng X H, Chen H, Yan Z B, Li D S, Yu H B, Huang Q and Zhou J M 2004 J. Appl. Phys. 96 1899
[27] Eliseev P G, Perlin P, Lee J Y and Osinski M 1997 Appl. Phys. Lett. 71 569
[28] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370
[29] Bimberg D, Sonderge M and Grobe E 1971 Phys. Rev. B 4 3451
[30] Lai Y L, Liu C P, Lin Y H, Lin R M, Lyu D Y, Peng Z X and Lin T Y 2006 Appl. Phys. Lett. 89 151906
[31] Hao M, Zhang J, Zhang X H and Chua S 2002 Appl. Phys. Lett. 81 5129
[32] Yasan A, McClintock R, Mayes K, Kim D H, Kung P and Razeghi M 2003 Appl. Phys. Lett. 83 4083
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[9] Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
Xiang-Chuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Jing Min(闵靖), Shi-Guo Peng(彭世国), and Kai-Jun Jiang(江开军). Chin. Phys. B, 2022, 31(1): 016701.
[10] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[11] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[12] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[13] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[14] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[15] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
No Suggested Reading articles found!