Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087104    DOI: 10.1088/1674-1056/21/8/087104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High sensitivity refractive index gas sensing enhanced by surface plasmon resonance with nano-cavity antenna array

Zhao Hua-Jun (赵华君 )
Institute of Information Optoelectronics Technology and Application, Departments of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
Abstract  The surface plasmon resonance gas sensor is presented for refractive index detection using nano-cavity antenna array. The gas sensor monitors the changes of the refractive index by measuring the spectral shift of the resonance dip, for modulating the wavelength of incident light. It is demonstrated that minute changes in the refractive index of a medium close to the surface of a metal film, owing to a shift in the resonance dip of the wavelength, can be detected. The average detection sensitivity is about 3200 nm/RIU (refractive index units), which is twice more than that of metal grating-based gas sensor. The reflectivity of the surface plasmon resonance dip is only ~ 0.03%, and the full widths at half maximum (FWHMs) of bandwidth of the angle and wavelength are ~ 0.20° and 4.71 nm, respectively.
Keywords:  subwavelength structures      sensor      resonators      surface plasmons  
Received:  21 November 2011      Revised:  13 January 2012      Accepted manuscript online: 
PACS:  71.45.Lr (Charge-density-wave systems)  
  87.19.lt (Sensory systems: visual, auditory, tactile, taste, and olfaction)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the Natural Science Foundation of Chongqing Science and Technology Program, China (Grant No. CSTC, 2010BB2352) and the Fund of Chongqing Education Committee (Grant No. KJ121224).
Corresponding Authors:  Zhao Hua-Jun     E-mail:  zhaohjcu@163.com

Cite this article: 

Zhao Hua-Jun (赵华君 ) High sensitivity refractive index gas sensing enhanced by surface plasmon resonance with nano-cavity antenna array 2012 Chin. Phys. B 21 087104

[1] Maier S A 2007 Plasmonics: Fundamentals and Applications (Berline: Springer)
[2] Liedberg B, Nylander C and Lundstrom I 1983 Sensors and Actuators 4 299
[3] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H and Zhao Y 2010 Chin. Phys. B 19 047304
[4] Hao P, Wu Y H and Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese)
[5] Kretschmann E 1971 Z. Phys. 241 313
[6] Roh S, Chung T and Lee B 2011 Sensors 11 1565
[7] Hu C K and Liu D M 2010 Mod. Appl. Sci. 4 8
[8] Cullen D C, Brown R G W and Lowe C R 1988 Biosensors 3 211
[9] Lin K Q, Lu Y H, Chen J X, Zheng R S, Wang P and Ming H 2008 Opt. Express 16 18599
[10] Caruso F, Jory M J, Bradberry G W, Sambles J R and Furlong D N 1998 J. Appl. Phys. 83 1023
[11] Tao N, Boussaad S, Huang W, Arechabaleta R and Agnese J D 1999 Rev. Sci. Instrum. 70 4656
[12] Nenninger G G, Tobiska P, Homola J and Yee S S 2001 Actuators B 74 145
[13] Kolomenskii A, Gershon P D and Schuessler H A 1997 Appl. Opt. 36 6539
[14] Zhao H J and Yuan D R 2010 Chin. Opt. Lett. 8 1117
[15] Moharam M G, Grann E B, Pommet D A and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068
[16] Li L F 1996 J. Opt. Soc. Am. A 13 1870
[17] Lee J, Wang L P and Zhang Z M 2008 Opt. Express 16 11328
[18] Cui Y X and He S L 2009 Opt. Lett. 34 16
[19] Palik E D 1998 Handbook of Optical Constants of Solids (London: Academic Press)
[20] Inagaki T, Kagam K and Arakawa E T 1981 Phys. Rev. B 24 3644
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[7] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[8] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[9] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[10] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[11] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[12] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[13] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
No Suggested Reading articles found!