Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 086103    DOI: 10.1088/1674-1056/21/8/086103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pressure-induced structural transition and thermodynamic properties of RhN2 and effect of metallic bonding on its hardness

Liu Jun (刘俊)a, Kuang Xiao-Yu (邝小渝)a, Wang Zhen-Hua (王振华)a, Huang Xiao-Fen (黄肖芬 )b
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
b College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China
Abstract  The elastic constant, structural phase transition, and effect of metallic bonding on the hardness of RhN2 under high pressure are investigated through the first principles calculation by means of the pseudopotential plane-waves method. Three structures are chosen to investigate for RhN2, namely, simple hexagonal P6/mmm (denoted as SH), orthorhombic Pnnm (marcasite), and simple tetragonal P4/mbm (denoted as ST). Our calculations show that the SH phase is energetically more stable than the other two phases at zero pressure. On the basis of the third-order Birch-Murnaghan equation of states, we find that phase transition pressures from SH to marcasite structure and from marcasite to ST structure are 1.09 GPa and 354.57 GPa, respectively. Elastic constants, formation enthalpies, shear modulus, Young's modulus, and Debye temperature of RhN2 are derived. The calculated values are, generally speaking, in good agreement with the previous theoretical results. Meanwhile, it is found that the pressure has an important influence on physical properties. Moreover, the effect of metallic bonding on the hardness of RhN2 is investigated. This is a quantitative investigation on the structural properties of RhN2, and it still awaits experimental confirmation.
Keywords:  phase transition      elasticity      hardness  
Received:  14 October 2011      Revised:  26 December 2011      Accepted manuscript online: 
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  62.20.D- (Elasticity)  
  46.55.+d (Tribology and mechanical contacts)  
Fund: Project supported by the Doctoral Education Fund of the Education Ministry of China (Grant No. 20100181110086) and the National Natural Science Foundation of China (Grant Nos. 11104190 and 10974138).
Corresponding Authors:  Kuang Xiao-Yu     E-mail:  scu_kuang@163.com

Cite this article: 

Liu Jun (刘俊), Kuang Xiao-Yu (邝小渝), Wang Zhen-Hua (王振华), Huang Xiao-Fen (黄肖芬 ) Pressure-induced structural transition and thermodynamic properties of RhN2 and effect of metallic bonding on its hardness 2012 Chin. Phys. B 21 086103

[1] Jhi S H, Ihm J, Louie S G and Cohen M L 1999 Nature 399 132
[2] Zerr A, Miehe G and Riedel R 2003 Nature Mater. 2 185
[3] McMillan P F 2002 Nature Mater. 1 19
[4] Kroll P, Eck B and Dronskowski R 2000 Adv. Mater. 12 307
[5] Chhowalla M and Unalan H E 2005 Nature Mater. 4 317
[6] Gregoryanz E, Sanloup C, Somayazulu M, Badro J, Fiquet G, Mao H K and Hemeley R 2004 Nature Mater. 3 294
[7] Crowhurst J C, Goncharov A F, Sadigh B, Evans C L, Morrall P G, Ferreira J L and Nelson A J 2006 Science 311 1275
[8] Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J and Mao H K 2006 Phys. Rev. Lett. 96 155501
[9] Crowhurst J C, Goncharov A F, Sadigh B, Zaug J M, Aberg D, Meng Y and Prakapenka V B 2008 J. Mater. Res. 23 1
[10] Chen Z W, Guo X J, Liu Z Y, Ma M Z, Jing Q, Li G, Zhang X Y, Li L X, Wang Q, Tian Y J and Liu R P 2007 Phys. Rev. B 75 054103
[11] Wu Z J, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 75 054115
[12] Wang Y X, Arai M and Sasaki T 2007 Appl. Phys. Lett. 90 061992
[13] Montoya J A, Hernandez A D, Sanloup C, Gregoryanz E and Scandolo S 2007 Appl. Phys. Lett. 90 011909
[14] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[15] Yu R, Zhan Q and De Jonghe L C 2007 Angew. Chem. Int. Ed. 46 1136
[16] Wang Y X, Arai M, Sasaki T and Fan C Z 2007 Phys. Rev. B 75 104110
[17] de Paiva R, Nogueira R A and Alves J L A 2007 Phys. Rev. B 75 085105
[18] Wu Z J and Zhao E J 2008 J. Phys. Chem. Solids 69 2723
[19] Li Y W, Wang H, Li Q, Ma Y M, Cui T and Zou G T 2009 Inorg. Chem. 48 9904
[20] Yu X, Oganov A R and Ma Y M 2010 Phys. Rev. Lett. 104 177005
[21] Nakamoto Y, Sakata M, Shimizu K, Fujihisa H, Matsuoka T, Ohishi Y and Kikegawa T 2010 Phys. Rev. B 81 140106
[22] Yuan P F, Zhu W J, Xu J A, Liu S J and Jing F Q 2010 Acta Phys. Sin. 59 8755 (in Chinese)
[23] Ji Z H, Zeng X H, Cen J P and Tan M Q 2010 Acta Phys. Sin. 59 1219 (in Chinese)
[24] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[25] Vanderbilt D 1990 Phys. Rev. B 41 7892
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Venables J A and English C A 1974 Acta Crystallogr. Sect. B 30 929
[29] Hill R 1952 Proc. Phys. Soc. A 65 349
[30] Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)
[31] Chen W, Tse J S and Jiang J Z 2010 Solid State Commun. 150 181
[32] Poirier J P 2000 Introduction to the Physics of the Earth's Interior (Cambridge: Cambridge University Press)
[33] Liu Z J, Duan S Q, Yan J, Sun X W, Zhang C R and Chu Y D 2010 Solid State Commun. 150 943
[34] Li X F, Liu Z L, Peng W M and Zhao A K 2011 Acta Phys. Sin. 60 076501 (in Chinese)
[35] Westbrook J H and Conrad H 1973 The Science of Hardness Testing and Its Research Applications (Ohio: ASM)
[36] Gao F M 2006 Phys. Rev. B 73 132104
[37] Wang Z H, Kuang X Y, Zhong M M, Lu P, Mao A J and Huang X F 2011 Europhys. Lett. 95 66005
[38] Gao F M, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y 2003 Phys. Rev. Lett. 91 015502
[39] Wang Z H, Kuang X Y, Huang X F, Lu P and Mao A J 2010 Europhys. Lett. 92 56002
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!